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ABSTRACT

This report develops 10 different approaches to the target tracking

problem based on bearing only observations. Its purpose is to form the

basis for an extensive simulation study, aimed at achieving the best

possible tracking performance for this tracking problem. Included in

the report are also a proposed initialization routine for bearing

only trackers, and a maneuver detection algorithm with a proposed action

scheme following the maneuver detection.
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SUMMARY AND CONCLUSIONS

Ten different approximative nonlinear filtering approaches to the

target tracking prohlem based on bearing only measurements have been

developed.

These approaches include two Extended Kalman filters (Cartesian and

Polar coordinate system representaticn), two second order Gaussian rilters

(Cartesian and Pola:), five different iterated Extended Kalman filters,

and one apprcach consisting of M parallel, Extended (Cartesian) Kalman

filters.

The polar coordinate system representation of the target motion

provided the necessary insight and equations for us to attack the

initialization problem based on bea.Ling only information. Based on tha

two assiumptions: 1) Straiqht tarqet trajectory and 2) Noisefree bearings,

we could show that given a target range, the target velocity components

could be calculated from three consecutive bearings, with no constraints

on the observer's trajectory over the observation interval. We could also

show, that if the observer's velocity was zero, we could calculate the

target's heading exact, even if the assumed range was false.

By including a fourth bearing, and introducing the constraint that

the observer should be maneuvering during the observation interval, we

also derived the equation for calculation of range to target.

In order to take into account the fact that the observations are noisy,

a procedure for smoothing of initial range and velocity data calculated

fron a batch of bearing observations was proposed.

In order to adapt the straight trajectory filters to the curved

trajectory case, which results from a maneuvering target, we derived the

iv



structure for a likelihood ratio test based oa the principle of comparing

the innovation sequence with its expected statistics, based on the "no

maneuvre" hypothesis. When the actual variance of the innovation sequence

becomes consistently larger than its expected variance over the most

recent L samples, the "target maneuvre" hypothesis is accepted.

The proposed action scheme following the maneuvre detection included

two main features:

1. A reprocessing of the observations ontained in the time

period At prior to the maneuver detection, where At is

the nominal time delay between the s3tart of the maneuvre

and its detection.

_ IMsing i~ltUed memory on the filter, by increasing the

velocity elements of the covariance matrix, before the

reprocessing of observations described above takes place.

The result of this scheme will be a better utilization of the obser-

vations obtained during the target maneuvre. When the reproce3sing of

the observations obtained during the time period At are finished, a dis-

crete jump to a .iore correct position and velocity of the state vector

at the time when the maneuvre was detected, will be the result.

The purpose of this report is to be a mathematical basis for an

extensive simulation study where the performance of the different filtering

approaches to bearing only tracking can be compared.

When this simulation study has been performed, we will be in the

position to give an answer to the question: To what extent is it pos-

sible to overcome the three main problems with bearing only tracking:

1) The poor degree of observability, 2) The nonlinearity of the problem,

v



claiming for the best possible linearization trajectory, and 3) The

target maneuvre detection and handling problem.

We have not made any efforr to analyze and compare the computational

complexity nor the memory capacity requirements of the different filters.

The reason for this is that we didn't want these aspects of the problemn

to constraint our choice of filtering a,?proaches at this stage.
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1•INTRODUCTION

1 1.1 Problem Statement

Our objective is to investigate the target tracking problem based

on bearing observations from a single, moving observer.

Our approach will be threefold:

1. D:Mrive different mathematical approaches to the filtezing

problem for targets moving along straight trajectories,

2. Derive more optimal initialization routines based only on

bearing observations from the moving observer.

3. Derive maneuvre detection algorithms, which, together

with specific action patterns following the maneuvre

detection, allows the straight trajectory filters to

adapt tc curved trajectories.

We restrict the problem to tracking in the x-y-plane.

The observer's position, velocity and acceleration are known

functions of time, with known accuracy (10 values).

The bearing sensor's accuracy is known (1a).

1.2 Report Outline

The composition of this report can be described as follows:

Chapter 2 introduces the difficulties that exists for this type of

tracking, and gives an outline of the different approaches to straight

trajectory tracking that will be developed.

In Chapter 3 we develop the mathematical equations for 10 different

filtering approaches to this tracking problem.

In Chapter 4 the initialization problem is analyzed, and necessary

equations for an initialization routine for bearing only trackers are

proposed.

,m
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Chapter 5 gives a short resume over earlier approaches to maneuvering

target tracking, and continues with the detailed equations for a proposed

maneuvre detection and handling scheme for the different filtering

approaches given in Chapter 3.

The purpose of this report is to form the basis for a simulation

study, where the different tracking approaches are compared, and the fil-

tering approach wi- h the best overall performance can be selected.

Chapter 6 gives a few guidelines to be taken into account while planning

and performing this simulation study.



2. PROBLEM ANALYSIS AND APPROACH PROPOSALS

The main problem with this type of tracking is the poor degree of

observability. It is well known that the success of this tracking

scheme depends entirely on the observer's maneuvering. Simultaneously,

in most cases, the tracker has to be based on a maneuvering scheme

selected on other criterias than tracking performance. This is due to

reasons Vke:

- Narrow waters

- Not reveal the observer's position

- Not restrict the captain's decision space.

The topic of selecting the optimal maneuvre in order to maximize

the observability has, however, been treated by D.J. Murphy [l].

Another problem is the necessity to perform linearization about

the target trajectory. However, this trajectory is unknown. The pur-

pose of our tracker is to estimate this trajectory. Now, if lineari-

zation is performed about the a priori estimate of the state vector,

which is the most obvious thing to do, the utilization of observations,

when the estimated trajectory is far from the correct one, will be

poor. This is the case in the initialization phase, and after a

target maneuvre.

A proposed initialization routine for bearing only trackers will

be developed in Chapter 4.

ThF. third main problem with this type of tracking is the maneuvre

detection and handling problem. If the target peý..:foxms a maneuvre

after a stable target solution is established, it is possible to detect

the occurrence of the maneuvre (after a certain period of time) without

-3-
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the observer maneuvering. However, in order to arrive at the new,

post-maneuvre target course and speed, an observer maneuvre normally

has to take place. This is due to the time delay between the maneuvre

occurrence and its detection, resulting in range to target error at

the target maneuvre detection time point. Since this time delay will

vary, depending on the type and size of the target maneuvre, the range/

velocity ambigu. v cannot be resolved exactly without an observer

maneuvre. Maneuvre detection and following actions patterns will be

proposed in Chapter 5.

The question is now: How can these three problems be overcome?

Or to put it more correctly: To what extent do different approaches

to this target tracking scheme overcome these three problems?

Existing literature on the subject fail to give an answer to this

question.

Our intention is, therefore, to develop a number of different

approaches to this target tracking problem, which can form the basis

for an extensive simulation study, where the different approaches are

compared. When this simulation study is finished, our basis for giving

a reliable answer to the question above should be greatly improved.

The following 10 approaches are proposed:

1. Extended Kalman filter, Cartesian Coordinate system repre-

sentation. State vector:

x

yc2 (2.1)

vx

v--Y
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observation equation:

t= tan- + w (2.2)

where

X = target's x - coordinate

y = target's y - coordinate

k v = target's x - velocityx

v target's y - velocity
y

x = observer's x - coordinate
S

y = observer's Y -coordinate

= bearing from observer to target rel. north.

w = observation noise

2. Extended Kalman filter, polar coordinate system representation.

State vector:

R
X - (2.3)

v
x

v
Y

IF Observation equation:

ME [1 0 0 0lX+ w (2.4)

jt



-6-

where , vx, v and w are defined earlier, andY

R = range from observer to target

Z. Second order Gaussian filter, representation as in 1.

4. Second order Gaussian filter, representation as in 2.

5. Iterated Extended Kalman filter, representation as in 1,

iteration scherat- in Jazwinski [2], pp. 278-279.

6. Iterated Linear Filter-Smoother. Representation as in 2,

iteration scheme as in Jazwinski [2], pp. 279-281.

7. Global Iterated Filter, Representation as in 1, iteration

scheme as proposed by Jazwinski [2], pp. 281.

8. Global Iterated Filter. Representation as in 2, iteration

scheme as in 7.

9. Extended Kalman filter, Cartesian coordinate system repre-

sentation. State vector:

"xk
Yk

=k v (2.5)

Yk-N

v
xk-N

v
yk-N_
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where

N = May be variable number > 1

3 State vector at sample k, representation as in 1.

C
xk-N = State vector at sample k-N, representation as in 1.

Observation equation:

S*k \xk - sk/
•[{~~Y k- Y--sk-N

-- ] (2.6)
S• ~tan-•

Lk•- t \ 'Yk-N-Ysk-N) wk

This scheme will process each observation twice. Details outlined in

Chapter 3.6.3 ("Serial" filter approach)

nRE •10. Parallel filter approachM filters, each with Cartesian coordinate

system representation as in approach 1, are initialized with range

R. = R + i . AR, i= 1,2,...,M (2.7)#10

gg!• where R0 and AR are constants. The a priori variances on R. for each

filter are assumed low, in order to stablize range for each filter.

T- The resulting state vector for this filtering scheme is given by:

where the probability p(Ri = R/zk) has to be determined. Details in

-• Chapter 3.7.



3. SYSTEM EQUATIONS FOR THE DIFFERENT APPROACHES

We will now continue with an outline of the system and filter equations

for the different approaches. However, special equations for tracker

initialization and for maneuvre detection and handling will not be

addressed in this chapter. These subjects will be treated in Chapter

4 and 5, respectively.

3.1 Extended Kalman filter, Cartesian Coordinate System.

The Cartesian Coordinate system representation is the most common

way to model the target motion dynamics. Several papers on target

tracking use this representation [3]-[11], and most probably in the

majority of the existing target tracking systems of this kind in operating

order, this representation is used.

Assuming the target is nonmaneuvering, the following mathematical

model can be established:

: 0 0 1 0 x 0 0

1 y 0 [0 1(3.1)

0' 0 0 0 v +1 0 [V al

ij 0 0 0 O vyl o 1

z = = tan( - ) +w (3.2)

The geometrical situation is depicted in Fig. 3.1:

--8--
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V I
yA I

• v
I... . .I, , ,iiX

Fig. 3.7. Target-Observer-Geometry.

The different variables in equations (3.1) and (3.2) should be
T

self-explaining from Fig. 3.1, except for w and v = [v v2 I These

are the measurement and the process-noise, respectively.

Since the tracker is going to be realized on a digital computer, the

discrete version of the equations (3.1) and (3.2) are sought. We get

(l/T - sample frequency) [3]:

!k+l = _(T)_ + O(T)v k (3.3)

(3.4)
Hr g(T, T ) + wk a dfeb

Here, ý(T), O(T) and g(xk) are defined by:
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"1 0 T 0

0 1 0 T
M (3.5)

¢(t)= 0 0 1 0

O 00 1

"T2 /2 0

Ij T2 /2

6(T) T 0 (3.6)

0 T

g(x -1 t Anl k) (3.7)

Further, Vk and wk are assumed to be while Gaussian processes with the

following characteristics:

• •E{v•}1 = 0

'E{wk =0

E{v vl=V a
-- i k kj (3.7)

M~W 2 = Wk k

"Ok. = 1 (3.8)

The noise processes 4 and wk are assumed uncorrelated. The process

noise covariance matrix, Vk, has the following form:



Vk v 2 k (3.9)

Further, we define:

Ayk -Axk1"k 2•=kkl 2Lk, - (3.10)

-xck- k kJ

where -. k- is the a priori estimate of the state vector at time k.

The Extended Kalman filter equations for the system described by

equations (3.3) to (3.10) are the following:

Initialization:

c

P 0 ,-I 0 (3.12)

Observation integration:

-4,k = -,k-1 + Kk(zk zk,k-1) (3.13)

,k-1= g -(3.14)
zkk, = P T k-.

K kc Hk,k QikPk,k1HiH + Wk) (3.15)

Pk,k = (I-Kk•)Pk,k-!(-'kHKk) +1'WkKT (3.16)

Time updating:

4-•+,k = 4(,),k (3.17)

Pk+l,k = (T)PkkO(T)T + O(T)Vk (T) T  (3.18)
=~ £

I
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3.2 Extended Kalman filter, Polar Coordinate System.

A discrete Polar coordinate system representation of the non-

maneuvering target can be derived mathematically, however, the easiest

way is to use a geometrical approach. Fig. 3.2 shows the relative

geometrical situation, as seen from the observer (the coordinate

system is fixed to the observer):

~y•

• ~CreI l
Fr•' /

Vre I

•k+i , ''

X%'
ýkI

Fig. 3.2. Relative Geomettical Situation.

By refering to Fig. 3.2, the following two equations can be estab-

lished directly:

k+l k+ tan ( )+ vlk (3.19)

R(+l -- M v2 (3.20)
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where v and V2 k are additional white Gaussian noise processes.

The variables ALpk and L1IN are the relative displacement between

observer and target ovez the sample period [kT, (k+l)T], along and

across the line of sight to target, *k" These variables can be given

by:

Sk j (3.21)
p YTk Ask

where the transformation matrix, Sk, is given by:

Sk = ink (3.22)

sLin k cos k]

and [AxkAyTk] T and [Ax Ay ] T are the target's and the observer' s
Tk ~ s skA

absolute displacement in x,y - direction during the sample period

[kT, (k+l)T].

Since the assumption is made that the target is not maneuvering,, we

have:

[Ax.k v]
=T (3.23)

AYTkJ k

where

v = target absolute velocity in x-direction at time kT
xk

v = target absolute velocity in Y-direction at time kT
yk

• :
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The observer's displacement during the sample period [MT, (k+l)T],

[AX Ay A IT, is given by the observer's dead reckoning system. Assuming:-

that the obseyver's acceleration is constant over the sample period, we

can write:

AXs sxk 1I xS= e •T + - T2. (3.24)

,Y skJ Iv .k- a syk_

where

Vsxk = observer's velocity in the x-direction at time kT

V yk = observer's velocity in the y-direction at time kT

a = observer's acceleration in the x-direction at time Wksyk

a syk = observer's acceleration in the y-direction at time kT

Now, selecting the Cartesian velocity components vxk and vyk as

representation for the target velocity, the total, nonlinear Polar

coordinate system representation of the target-observer relationship,

is given by:

"vk+l I I+ r

y k+1 yk V
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Defining:

+ t

(k+ Lpk (3.26)

vk

and

I Evlkv2kV3kV4k] (3.27)

equation (3.25) can be written:

+= f() + -k (3.28)

Further, defining the observation matrix:

H = [l 0 0 0] (3.29)

the observation equation for the system described by equation (3.28)

will be-

Zk =H - • +wk (3.30)

Equations (3.28) and (3.30) are our final equations for the Polar

coordinate system version of the target tracking p.-oblem. As we can

see, the system dynamics are nonlinear, while the observation equation

is linear.

II
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In order to utilize the Extended Kalman filter on this system, we

have to develop:

S ) (3.31)

The development of Fk is done in APPENDIX A. The result is:

Rk1IRk + ALk) A•k TAL TALS __(pk) ok xk
2 2 2 2

RkC+l \i+i Rk+l."~

R f +AL T i.AL TALx=•_s k X pi A s3

Ic R R Rl~ (3.32)

0 0 1 0 j
0 0 0 1

where

Alýý (R k + ALpkc) sin ýk+ ALN co COS (3.33)

ALyk =(R k + ALpkc) Cos ýk ALjqk sin k(3,341

or, by inserting for AL pk and AIN from equation (3.21):

ALk= Ilk *sin ýk + Axk - Ak (3.35)-

ALyk = C k + AYTk - Aysk (3.36)

The Extended Kalman filter-equations for the system described by

equations (3.28) and (3.30) are the following:
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Initialization:

2- F (3.37)
-0,-i -0

P? =pP (3.38)
0,-i 0

Observation Integration:

4, 4,k-1+ Kk(zk ,k-1) (3

A = 1(3.40)
Zk,k-.I % ,k-1

p T -1T
KkP ~ (mY T+W(3.41)"k = 'k,k-lT ('kPkIH + Wk)

,kk (I-H)P , kI( H)T + 1 ,Wk (3.42)

kc,k (1 kl '~,k-1 k +

Time updating:

, (3.43)

p = Fp+ (3.44)
k+l,k k k, k k

where the process noise covariance matrix, Vk, is given by

v p v 0 0 0

0 0 0

VP k=(3.45)
I- 0 0 v 3k 0

0 0 0v4k

In order to get identical initial conditions for the two repre-

senLations given in Section 3.1 and 3.2, the following relationship
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exists between the initial conditions given in equations (3.11), and

(3.37), (3.38):

"0 sin •0 0 0-

0 Cosi n 0  0 0 (3.46)
0 0 1 0

0 0 0 iJ

Further, defining:

R cos 0  sin 0  0 0

-R sin 0  cos 0 0
T = (3.47)

0 0 1 0

0 0 0 1

we have:

P= TP0TT (3.48)
0 0

3.3 Second Order Gaussian Filters.

The following development follows the spirit of Jazwinski [2],

pp. 91, 336-346, 362-365, and Gelb [12], pp. 191-192. We are, however,

interested in a system representation where both system dynamics and

observation are discrete, while [2] and [12] are concerned with continuous

system representation, and discrete observations. Therefore, the discrete

version of the second order time updating equations have to be developed.

Jazwinski [2] defines 4 different possible solutions to second order

filtering:

-1
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1. The truncated second order filter.

2. The Gaussian second order filter.

3. The modified truncated second order filter.

4. The modified Gaussian second order filter.

We select approach no. 4, which also has been developed by Wishner

et al. [131. For this approach the following assumptions are made

about P(xk);

1. p(xxk) is symmetric and "close to the mean".

2. The third central moment is zero.

3. Assuming Gaussian density, the fourth central moment is
approximated by:

E (x. (^.) (x.- ( ) (xP-_) = pjp + + pjp.+ pkpj (3.49)
-i -3 -j (Žxk-4) ý-xk- 3k it~ jik ]

4. The fifth and higher order moments are neglected.

In order to proceed the development, a couple of operators have to

be defined, namely 1) _2 (f(x),B) and 2) (32f P2a2f):
X

1) The operator 2x(f(x),B), for any function f(x), any x and
x

th"any matrix B is a vector whose i element is defined by:

F 1T

(f,B) = trace - B (3.50)

2 ?2a2fx
2) The operator [a f(x)P afxfl, for any function f(x), any x andx-- x

any symmetric matrix P, is a symmetric matrix with elements (i,j) [2]:

2 2• n a~f. a~f,

-x.•gx Pp kq
WE k, ,pxq p q
aý

LEE___
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Wishner et al [13] gives another definition of this operator, which

turn out to give identical result. The [i,j]th element is in [13] given

by:

trace (f L x T ." P .- (f Lx))] P (3.52)

In the following, we will use the definition in eq. (3.52) for this

operator.

With the definition of these two operators in mind, we are ready to

develop the modified Gaussian second order filter.

The system and observation equations are assumed to have the following

form:

'k+l =(..k) + Y (3.53)

zk = g(_k)+ Wk (3.54)

If f and g are sufficiently smooth, the second order terms can be

included in the Taylor expansions for f and g. Linearizing f about

= k,k and g about x = •,klf ;e get:

af

IXk,k (3.55)

Ix__ = x ',k

x = ,k- (3.56)

+ aX (g, (x4-4,k-1) (x-k-

S= -k,k-i

___ __ _
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We recall the definitions of equations (3.10) and (3.31). Now, taking

the expectations of equations (3.55) and (3.56), making use of the

assumptions that:

'k -,k -

(3.57)
E'4_I- l 1 0

we get:

I &+1,k = E{f()_ } = f ' + • k -k'k (3.58)

z k,k-l = E{g(xk)} = g(2 + k (g, (3.59)

t Equation (3.58) is the second order approximation difference equation

for x between observations. We now seek a recursive equation for the

I covariance matrix P between observations. Using (3.53)1, (3.55), (3.31)

and (3.58) we get:

P . . . . T}I4k+1,k _{ -x+1,k) x+i-k+1,k

12 [( 2 k) + (A..2T}
(* x ,k '_k k ,-k)- ,k - kk -k

=P T (3.60)
Sk k,kk + vk + (k

where Lk is given by:

,k

(3.61)

9A (f,Pk)9A (f,PI4 •: k ,k • k ,k
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By use of the approximation given in equation (3.49), Lk can be reduced

to [2]:

1 2 2 2 fA

Lk 2 Xkk -'(4,k' k,k 3^ f ) (3.62)

Equations (3.60) and (3.62) are the sought recursion for P between
k

observations.

The equations for the modified Gaussian second order filter at an

observation is given in [2]:

xk,k = -k,k-1 'k(zk-Zk k-l (3.63)

Pk,k = (I-KkHk)Pkk-l(I-KH.) T + TW•(.4

(I IWK H + (3.64)

P T T -1k= Pkk1kHkPk,k-1k + Wk + "k] (3.65)

A I c^ )P 2  2 (3.66)Ak =ý -( ý-~l(k~~k,k-l lk,k- k_ g (_.k, k- 1)) (.

The necessary equations for the modified Gaussian seccnd order filter

are now established, and constitutes of equations (3.58), (3.60) and

(3.62) for time updating, and (3.63), (3.59), (3.64) - (3.66) for ob-

servation integration.

The equations will now be specialized to the two different representa-

tions of the target tracking problem.

3.3.1 Cartesian Coordinate System Model

The Cartesian system model representation of the target motion with

bearing only measurements is given by equations (3.3) to (3.7). Since
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the system dynamics are linear, the second order filter equations for time

updating, equations (3.58), (3.60) and (3.62) reduces to the normal Kalman

filter equations, given by equations (3.17) and (3.18). The observation

equation (3.4), however, is nonlinear, and equations (3.59) and (3.66)

have to be evaluated for the nonlinear function g(xk) given by equation

S(3.7).

From equations (3.59) and (3.7) we get:

=-,k-i tan l k, l-Ykk + bk (3.67)

where bk is given by (see equations (3.59) and (3.50)):

(3.68)

b 2 (tan- 1  1 L tan-1 T
bk 2 • (,- Pkk-l) trace_ x_ ] k,k-l(

.kk- 2 a ,k -l

Defining (see Fig. 3.1):

Ax = x -
-]• x,k-I k

Ay= Yk,k-1 - Ysk (3.69)

R= VAx2 +Ay2

-1

Stan IL
'AY)]we can calculate - _ I

NI

ax a
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The result:

R 4R4

SAx Ay 2 2Ax-Ay 0 0

D tn R4 R (3.70

D 0 tan0x R 0 0
a=a (3.70)

0 0 0 0

Based on equation (3.70), equation (3.68) becomes

-2AxAy P 1 + (Ax2 -Ay 2 )P 2 1 , -2AxAyP-1 2  (Ax2 -Ay 2 )P 2 2  0 0
S...2Axy 2I +2AxYP2 AA

b 1 trace 11+ 2AyP 2 1 , (Ax2-Ay2)Fl2 + 2xYP2' 0 0

k 2 R4

0 0 0 0

0 0 0 0

(3.71)
Finally:

bk 2 2AxAy(P 2 2-P1 1 ) + (Ax2-Ay2) P21 + P1 2)j (3.72)
2 R

Next we have to evaluate equation (3.66) based on equations (3.52) and

(3.7). The result is

1 22 2 2 2 2 2

A 1 [2Ax Ay (Pll+P2 2 -P 1 2 -P 2 1) - 2AxAy(Ax2-Ay2) (PII-P2 2 ) (PI 2 +P2 1 )

2 22(3.73)
k R Ax2-1y2)2 12 P21 ) 112]22

+ (Ax Ay 2) (P 1 1 P2 2 + P12

In equation (3.71) - (3.73) the variables P11 ' P1 2' P2 1 ' and P2 2 are

the position elements of the covariance matrix Pk,k-l' i.e.,
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S11 1 12 P13 P14

P 21 P22 P23 P24
SPk,k-I = (3.74)

p3 1  p3 2  p3 3  p34

p 41 4 2  P4 3  P44

The modified Gaussian second order filter for the Cartesian system

model representation of the target motion can then be summarized as follows:

Initialization: Equations (3.11) and (3.12).

Observation Integration: Equations (3.13), (3.67), (3.72), (3.65), (3.73)

and (3.16).

Time updating: Equations (3.17) arid (3.18).

3.3.2 Polar Coordinate System Model

The polar coordinate system representation of our -racking problem is

given by equations (3.28) and (3.30). In this case the system dynamics

are nonlinear, while the observation equation is linear.

The second order filter equations for time updating, equations (3.58),

(3.60) and (3.62) have then to be specialhzed to our polar coordinate system

model, while the observation equations, equations (3.63)-(3.66), (3.59),

reduces to the normal Extended Kalman-filter equations, given by equations

(3.39)-(3.42).

From equation (3.58) we get:

i P ^P 1 (3.75)
.Xk+k•, ( ,k) Y
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where the vector C has elements i given by:

C =trace _f j (3.76)

Further, we have to calculate the matrix Lk given by equation (3.62).

The calculation of C and k are performed in APPENDIX B. The results

are:

4
C Z fl..P..j,i=l J1 lJ

C 2k 42k E f2..P.. (377)

C j,i=l 

(

0

C 4kj 0

4 4 4
s..s.. Z S..t.. 0 0S~j,i=l J' 'J j,i* 31 13

4 4
St..iis. 7. t..it..i 0 0

•!-1j, i~lr- • = 
(3.78)

o 0 0 0

0 0 0 0

The elements of the matrices Fl, F2, S and T are given in APPENDIX B.

The modified Gaussian second order filter for the Polar Coordinate

system model of the tracking problem can then be summarized as follows:
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Initialization: Equations (3.37) and (3.38)

Observation integration: Equations (3.39)-(3.42).

Time updating: Equations (3.75), (3.77), (3.60) and (3.78).

3.4 Iterated -Extended Kalman Filter [2]

The following 5 approaches to solve the target tracking problem are

all approaches involving some sort of iteration scheme. The first approach,

called the iterated extended Kalman-filter, is a local iteration scheme,

and is designed in order to reduce the effect of measurement function

nonlinearity. This approach can therefore be tried on the Cartesian

coordinate system representation, which have linear system dynamics and

_M nonlinear measurement model.

Since this approach is very well documented in Jazwinski [2], pp. 278-

} 279, it should be unnecessary to repeat the equations in this text. For

.co.apleteness, however, the approach is includec' in APPENDIX C.

3.5 Iterated Linear Filter-Smoother [2]

If we have system dynamics nonlinearities, the preceding iterator will

not improve the estimate •+lk due to system nonlinearities acting on the

interval [kT, (k+l)T].

The preceding iterator can therefore not be used in connection with

the polar coordinate system representation of the target motion.
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The "Iterated Linear Filter Smoother", proposed by Jazwinski [2],

pp. 279-281, include the time updating process in the iteration loop.

This approach can therefore be tried on the polar coordinate system repre-

sentation of our tracking problem.

Again, since the approach is well documented in [2], the iterator

equations are exiled to APPENDIX D.

3.6 Global Iterated Filters

As we mentioned in Section 2, one of the main problems with bearing

only tracking is the poor degree of observability. The observability of

range is entirely dependent on the maneuvering scheme of the observer.

in order to improve the observability, and at the same time ixprove

the reference trajectory and thereby get a more optimal utilization of

each observation, a number of global iteration schemes are proposed.

The iterations will here not be performed at the time kT (as in section

3.4) or over the time interval [kT, (k+l)T] (as in section 3.5), but over

the greater time interval [(k-N)T, kT], where N is some integer constant,

may be variable.

This iterator requires, however, a lot of memory capacity for storing

of variables. The following sequences has to be stored (M is an integer

constant > N):

Observation Sequence:

k {k-M, zkM+l, zkM+2,..zkl (3.79)



-29-

Observer position, velocity and acceleration:

Xk = { xx ,... ,xk (3.80)• kk-SkM -- skS+1. -

SVs = {v , v ,...,v sk
sk =-Sk-M SkM+1 sk

AsA = {aS , -s-la ,...,a sk} (3.82)

covariance matrix:

Pk ={P k-M,k-M' "Pk,k1 (3.83)

As we can see, the memory capacity requirements will depend on the

size of the integer M. Also, if the iteration time interval is fixed

(N = constant) or the variation space for N is fixed (Nlow < N < NHIGH'

where NLOW and NHIGH are constants), the requirements for storing of the

covariance matrix can be restricted to

Pk = {Pk-N HIGH' Pk-N HIGh+'...',PkN (3.84)
HIGH H~h k~ LOW

The requirements concerning storing of the observer's velocity and ac-

celeration will also depend on the representation of the tracking problem.

Equations (3.79)-(3.83) therefore represent an upper bound on the memory

capacity requirements.

Intuitively, if the observer has performed a maneuvre during the

time interval [tk-N)T, kT], a globa2 iteration scheme will improve the

9& observability. The idea is that we then get crossbearings over this

it time interval.

Three different approaches to the Global Iterated Filter will be

outlined in the following.

I Ur,
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3.6.1 Cartesian Coordinate System Representation

The first approach to be Global Iterated Filter utilize the Cartesian

CoorC".nate system representation described in Section 3.1.

The number of iterations, i, on each set of data, has to be limited.

The following test is proposed in order to stop the iteration sequence

at a time instant kT:

i , _ (3.85)

where the C vector has to be selected through simulations as a compromise

between accuracy and computertime (number of iterations).

If a target maneuvre is detected, the size of the iteration interval

should be decreased in order to not perform iterations on premaneuvte

target data. The iterator should therefore have an adaptive calculation

sequence for N, in connection with the maneuvre detection system. We

will return to this point when dealing with the maneuvre detection system

in Chapter 5.

Thc -iterator will work in the following way:

Having performed iterations on the observation sequence {zk_2N,

._.2N+I,...,_N}, until the criterium JI N,kNi-•_,kNII < e is

satisfied, we have the state vector ANk- and the covariance matrix

Pk-N,k-N" These are stored in the computer memory. Perform the global

iteration algorithm subsequently on the observation sequences {•-2b+I'

kN+I}, {Zk_2N+2,.., zk-N+2I etc. At each fulfilled iteration, say

at samplepoint jT, the covariance matrix P.. and the state vector

Ax . are stored. Like in the conventional Kalman-filter case, however,

only the value of the state vector at the last samplepoint is needed, so
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the next state vector -' . can use the same storage are as x. (and

thus destroy _^

9 Eventually, when we arrive at sample kT, we have the following data

base poicture (older data have been discarded):

Observation sequence: {z-N"". " Zk }.

Covariance sequence: {Pk-N,k-N' ' Pk-l,k-l"

Observer position sequence: {x }.. x I
~k-N

State vector:

From this startpoint the following calculations are performed:

1. Time updating. Calculate d,k- P

Al2. Observation integration. Process Zk, resulting in

and P where i=l.

3. Timebackdating:

i A
-- N,k-N 4p(-NT) -•,k (3.86)

Pk-N,k-N= fetched from the data base

4. Reprocess the observation sequence, resulting in
i+I i+l

Rk,k' k,k

5. Perform the test described by equation (3.85) to decide

whether to continue the iteration loop, or to stop the

iterations on this observation sequence.

ffn•-
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a. If decision is continue the iterations, set i=i+l,

and start from step 3 again.

b. If decision is to stop the iterations, store i+1
i+l pKk

andk,k in the computer memory, set k = k+l, and
start from step 1 again.

This iterator will successively improve the linearization trajectory

for Hk (given by iauation (3.10)). The utilization of the data sequence

therefore will be increasingly more optimal.

3.6.2 Polar Coordinate System Representation

The second approach to the Global Iterated Filter utilize the Polar

Coordinate system representation described in section 3.2.

The mechanization of the iterator is identical to the iterator in

sequence 3.6.1, except for the time-back dating step.

Due to the nonlinearity of the system dynamics, where the target

position information is given in relative coordinates (relative to the

observer), timeback dating by use of the inverse form of equation (3.25)

(with the process noise vector 0), would be unnecessary time-
P

consuming. x. . would then have to be calculated for decreasing i, i=k,

k-l,... ,k-N, not in one big backdating step as we could do for the Cartesian

Coordinate system model (see equation (3.86)).

In order to save computertime, the following approach for time-back-

dating is proposed:

1. The state vector's position information is transformea to

Cartesian representation through:
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Ckk = k ,k'sin + (3.87)S%,k k~k sk

Sk,k Rk,k "cs Ok,k + Ysk (3.88)

where the different variables are defined (without time

subscript k, though) on Fig. 3.1. Since the velocity

representation is equal in the two representations, we

now have a complete, Cartesian state vector

2. Perform time backdating through equation (3.86), resulting
ACSin x•-N,k-N.

3. Perform the transformation from Cartesian to Polar repre-

sentation through the equations

ýk-Nk-, = tan 7_ kN (3.89)
k-N ,k-N y-s

~k kN ~~2 2 (3.90)"k-N,k = 5Nk--k-N + (yk-N,k-N-yS -

Now, if the time back dating step of the iterator described in

section 3.6.1 (step no. 3) were changed to include processing of equations

(3.87) and (3.88) before processing of equations (3.86), and to include

processing of equations (3.89) and (3.90) subsequent to equation (3.86),

the calculation steps 1-5 given in section 3.6.1 will be valid also for

the Polar coordinate system case.

One additional preferable requirement exists, however: The data-

base should also contain the observer's incremental position change from

sample to sample, given by the left hand side of equation (3.24), over

the time interval [(k-N) T, kT].

RK!
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Alternatively, these quantities can be calculated from the sequences

given in equations (3.81) and (3.82), if these are in the database.

This iterator will successively improve the linearization trajectory

for Fk (given by equations (3.31)-(3.32)). The computational require-

ments will, however, exceed the iterator in Section 3.6.1.

3.6.3 "Serial" filters

If the two previous described global iterators process each observa-

tion sequence {ZN Z-N+I"t." zk} twice, which is the minimum number

of iterations, each individual observation z will be processed 2N

times. It is thus obvious that these iterators will increase the

computational burden very heavily, as compared to the Extended Kalman-

filter case.

In an attempt to reduce the calculation load, and still bring along

the advantages of the global iteration approach, a different iterator

roposed for the Cartesian system representation. The effect of this

in fact two coupled filters, running along the target

.. ary with a certain time delay, NT, between the filters. This is

the reason for the nawe serial in the heading of this section.

The two serial filters are added together in one system description,

in order to get a compact form. We have:

ok+1 0 0 0 0 1 0 T(N+1) 0

Yk+l 0 0 0 0 0 1 0 T (N+I) Yk

v k+l 00 0 0 0 1 0Kv . 4 0 0 1 1y
x k-+1 x

V 0 0 0 0 0 0 1 v +

Yk • l o 1 0 -(N-1)T, 0 0 0 0 0, .
y xk-N+1 0 1 0 (N10 1 0 0 0 0 YkN

Vk ' •

- -- 0 . . . . . . . . . . . . . .
m~mxm k-N+1 mwV mxmk-•ww•mN mm
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T2/2 01 0 0
0 T2 /2 0 0
T Vk
T 0 0 01k

0 T I 0 0 V2k
0 0 T2 /2 0 " (3.91)

2 lk-N

0 0 J0 T /2

0 10 T 0 LV2k-NA
S0 0 0 T

" -y-ski W(3.92)

-1 k-N L

In equations (3.91) and (3.92), N is the number of samples between the

two parts of the state vector.

We now define:

and

= [ 1 = [ ](3.94)

LZ2k_ Lzk-NJ

Then, equation (3.91) can be written:

k- 0 ?'N+1)T)- O(T)1 0

+1- I---- - ---- - (3. 95)
[(-N-lT I 0 0 [ O (T)

LI
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Further defining:

[(3.96)
z2kJ k-N

-a 1 (Ax) 1

L \AYk-NA

and

= (3.98)

the observation equation (3.92) can be written:

Lastly, we define

()00 00 0 0'~(

R R -) -

( 3.100)1Fv o O
k 1

= k = 

(3 .102)

S. ... 
. . . . ..... 

. ... .... .. .. .. .. .... ". . : .. . ..... . ± .... .
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0( (N+1)T)
*(T) = l i(3.103)

S(-(N-l)T)l 0

and

L(T)I 0

0 1 (T)l

where V and W are given by equations (3.8) and (3.9), O(T) by equation

(3.6) and f(T) by equation (3.5). H can also be written:

Hk = (3.105)0 H

where is given by equation (3.10).

The Extended Kalman filter equations for this augmented (- system,

are given by equations (3.11)-(3.18), if replacement with the augmented

variables are performed in the equations.

In order to start up the augmented system correctly, the first N

observations aze processed with the Kalman-filter given in section 3.1.

Then the initial values for the augmented system will be:

= •3- = ] (3.106)

p 1
24 P0 (3.107)

O P0

•,• •
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At this point it is appropriate with a few comments on this

approach to global iteration. As we can see from equation (3.95), the

first part of the state vector, Xlk, is updated on the basis of the

second part of the state vector, x_2k, and vice versa. From equation (3.92)

we can further deduce that each observation will be integrated twice.

Looking at the iteration scheme given in section 3.6.1, we

can see that our serial" filter is equivalent with the steps 1-4,

with step 4 reduced to integration of zkN followed by a time updating

step up to time (k+l)T. Step 5 does not exist, each observation is only

reprocessed once.

The global iteration effect of this approach should then have been

demonstrated.

It should be pointed out that this scheme can be augmented to

incorporate a selected number of filters, say M, following each other

with a time difference NT. The resulting model would then look like:

1 \

E2\ \ (k)

(k+l) = \.

. 0

• 0 ,•(~(N+I) T). , .

-3 o(-•-I)T) 0 0 _ 0 e (T) 0

NX1 -l

(3.108)

with an observation equation:

(k) 'N- x (k (kk)

(3.109)

[_ (k-M) n-1 (k_-M)] Fw(k-)IU

}2 (3.109)
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In this case, each observation will be processed M times.

3.7 Paralle] Pilter Approach

The last approach that will be explored is the parallel filter

approach. In this case, where we have M parallel filters with different

linearization trajectories, only the simplest Cartesian model for each

filter will be considered, in order to reduce the computer time. Each

filter will, therefore, be represented by the mathematical model given by

equations (3.3)-(3.7).

The philosophy behind this approach is the following: Each filter

will be initialized with different range, Roi, i=l,2,...,M. The initial

values for the velocity components for each filter will depend on Rol

if the initialization routine proposed in Chapter 4 is used.

In the time interval from initialization until the first observer

maneuvre, target range is unobservable. The utilization of the bearing

observations in this time interval will be nonoptimal for all the filters

except the one(s) with approximately correct range. When the observer

performs a maneuvre, target range becomes observable. It is then possible

to identify which of the " filters that has the most correct range.

The resulting state vector for this filtering scheme can be given

by [141:

MZ iP( (3.110)

4where the probabilities P(R = Rk/Zk), i=l,...,M, have to be calculated.

The question is how.
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Now, the most likely quantity to contain information about there

probabilities, are the innovation sequences for each filter. These are

given by:

(3.111)'k *=k-- ,k-ii

In our special case, Cki is a scalar variable. Under a number of conditions,

which include the rejiirement of equality between the physical system and the

mathematical model contained in the Kalman-filter, the innovation sequence

has been shown to be a white Gaussian sequence with statestics -N(0, 2

where 0ki is given by:

2i i iT
2 i Wk (3.112)

2
k'ki i=1,2,... ,M, are already calculated by the Kalman filtrer algorithm.

2
mki = 0, and 2k.' i=l,2,... ,M, represents the expected mean and variance

for the innovation sequence.

The expected variance of the innovation sequence given by equation

(3.112) will be different for each filter, i.e., the variance will depend

on R.. Equation (3.112) can be written:
1

2 1 i 2i + Pi 2 i i .si
'i2= . 2i 1c k,k-l 22 k,k-l-Pll2 sin20k,k-l]4kR. k,k-i k,k-1 kk-l1

or equivalently (3.113)

2 1 i + 2aki = R. [P1k,k-1 P22k,k-1 a Wk

where
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sin Cos + *sin2&
al. 1 k,k-3 22kk k,k-1 +12 k,k-I.iP ,k-l k,k- Pk,k-i

(3.115)

U k The difference between the M different 0i 's will not be significant

in this case, since the observability of the bearing, 4, is very high.

The values of the covariance matrix elements, P11 ' p22 and P12 ' however,

will depend on R. In the equations for calculation of Pk k' the observation

noise will be weighted by R.. See Appendix E for detailed derivation of

the covariance equations.

As can be seen from Appendix E, each of the elements of the covariance

matrix P will increase for increasing R.. The value of the expected
Rk,k wl

innovation variance given by equation (3.113) will, therefore, not decrease

as a function of -2 however, "2 will decrease as some function of R.,

since the elements of P are limited in their growth, and does not in-
k,k

2crease with the power of R. anyway. A detailed simulation analysis of the

equations given in Appendix E has to be carried out, in order to reveal
7 the exact behaviour of P as a function of R..

teequactin gihveninu Apeni P has to bncari ed o ut inore.t.eva
k,k 3

SThe actual statistics for each filter i, i=l,2,....,M, can be approximated

by:

i n --. ' (3.116)i ki j 31N

Q 2 1 k2

2 C 1 E (E: -m 2  (3.117)

The idea is now to compare the innovation sequence's actual statistics

with its expected statistics, and thereby get an expression for the
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Probabilities P(R = RIzk).

In doing this, we have to consider the following two cases:

1. System not observable in the time interval [(k-N)T, kT].

2. System is observation in the time interval [(k-N)T, kT].

By observable or not we mean whether or not the range/velocity

ambiguity can be x.solved through the bearing observation over the time

interval C(k-N)T, kT]. In any case, the bearing to target will be

observable, and so will the ratio Av/R, where Av is the relative velocity

between target and observer.

The information as to whether the system is obiervable or not, and

the degree of the observability, is known to the trackinq routine,

since the observer's maneuvering history in the time interval [(k-N)T, kT]

4s known.

3.7.1 System not observable.

If the observer's velocity- and/or course-changes are below defined

thresholds over the time interval in qruestion, we know that the range/

velocity ambiguity can not be resolved from bearing observations only.

This case can further be devided into the following two sub-cases:

1. The target is not maneuvering during the time interval.

2. The target is maneuvering during the time interval.

A maneuver is defined as a definite course and/or velocity change,

not the natural small fluctuations in velocity and course due to waves,

wind, etc.
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3.7.1.1 Target not Maneuvering

If the target is moving along a straight course with constant speed,

the actual mean value of the innovation signal given by equation (3.116,

will be close to zero (below a defined threshold, say mt ).

Since we know that the target's natural fluctuations about some

mean course and speed doesn't depend on the distance from where it is

observed, it is likely that the bearing statistics should contain some

range information.

In fact, this case looks like the stationary process case where

adaptive noise estimation is possible. See Mehra [151, [16], and Chin

[171, [181.

In this case we propose to use the covariance matching method,

however, not to do any adaption (even if that should also be possible),

but to arrive at an expression for the probability function p(R. = R/zk).

If we set the equations (3.114) and (3.117) equal (expected variance =

actual variance), we get:

12(PllkIk_1 (Ri) + P (R G2 ) + = a 2 (3.118)
11 P 22 i R. k (R. k,k-1 k,k-l k.1 1

Solving this equation for the only explictly occurring R. in the equation

gives us:

P (R.) + P (Ri)-_f1 22 i-'Rk,k-l kk-9R* (3.119)
2

a W
'k. k

where R* may be different from R.. The difference:S1 1
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AR. = R* - R., i=1,2,...,M (3.120)
1 1

will be an expression for the range error for each filter.

We propose the following form for the probability function

PA (i=R/k) :

2
-a ' AR.

p(Ri = R/Z.) = K - e 1 (3.121)

where the variables K and a will depend on the process noise covariance

matrix Vk# and have to be decided upon through simulations.

3.7.1.2 Target Maneuvering

During a target maneuvre, the method described in section 3.7.1.1 will

not work, since we in this case gets temporary changes of unknown size

and duration in te process noise covariance matrix Vk, that are not

taken into account in the calculation of the expected variance of the

innovation signal.

Therefore, when a target maneuvre is detected, for example by an

abrupt change in both the actual mean and variance of the innovation

signal, the last calculated probabilities p(Ri = R/z k) should be used,

until the filters have adapted to the new course and/or speed, and

m i again drops below the threshold mLt.

Alternatively, if it is possible to decidc upon the time delay

between the instant of the target maneuvre and its detection, the

probabilities P(Ri = R/-kTAt) should be used, where At is the described

time delay.

Target maneuvre detection will be treated in Chapter 5.
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3.7.2 System Observable

If the observer is maneuvering during the time interval [(k-N)T, kT],

the range/velocity ambiguity can be resolved based on the bearing

observations only. In this case the filter with the most correct range

can be identified, if the target is not maneuvering during the time

interval in question.

We therefore have to consider the same two sub-cases as in section

3.7.1:

1. The target is not maneuvering during the time interval.

2. The target is maneuvering during the time interval.

3.7.2.1 Target not maneuvering

The filter with correct range will not change its actual statistics

when the observer performnc a maneuvre. This fact can be utilized to

prune off the filters with wrong range.

2
By monitoring ms and a given by equations (3.116) and (3.117) through an

k ki
observer maneuvre, it is thus possible to identify the filter with the

best range as the filter with the least change in actual statistics.

In this case, we continue to calculate the probability functions

given by equation (3.121) for a gradually decreasing number of parallel

filters, as the filters with the wrongest ranges successively will be

removed from being in an active state to a so-called "dormant" state,

where they no longer are updated.

The selection of the filters with bad ranges can be made from monitoring

m When m exceeds a given threshold mHt, the filter no. i is temporarily
ki ki
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pruned off the ensemble.

In this way the number of necessary parallel filters can be reduced,

and if the observer maneuvre extends over a time interval long enough, or

if the observer performs successive maneuves while the target remains on

straight course with constant speed, we will eventually be left with one

filter, with correct range.

This situati. i will prevail only until a target maneuvre is detected,

when all the M parallel filters should be initialized again.

3.7.2.2 Target maneuvering

When a target maneuvre is detected, all the M filters should be re-

initialized, independent of the number of active filters at the time of

maneuvre detection.

ThR M filters should be reinitialized with different ranges R .

centered about the estimated range ',k' given by the state vector

• ,k at the time of maneuvre detection. The difference between the

individual R i'o should be much less than during the first initializa-

tion, since range is not at all so uncertain this time.

Simultaneously, the velocity elements of the covariance matrix should

be increased, in order to allow the filter to adapt to the targets new

course and speed.

After reinitialization, the calculation of the probability function

given by equation (3.121) is resumed.

Target maneuvre detection and handling in connection with parallel

filters are treated in section 5.3.
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3.7.3 Closing remarks, parallel filters.

The parallel filter approach seems very promising, however, the calcu-

lation load imposed by this approach will be substantial.

In order to arrive at a practical parallel filter solution, the

idea of adaptively reducing the number of parallel filters have to be

investigated thoroughly. This can only be done through a simulation

study.

Further, this approach claim for a substantial simulation study in

order to "tune" in the different thresholds, time intervals and variables

defined in the previous sections.

One fundamental difference between the parallel filter approach and

the single filter approac:, is the range covariance. For the parallel

filter approach the range covariance should be kept low, in order to

make each filter "stiff" in range. This is not normally the case for the

single filter, where range covariance has to be high in order to allow the

filter to adopt the correct range during the periods when range is ob-

servable.

Y



4. INITIALIZATION RO•UTIN

4.1 General

Bearing only tracking from a single, moving observer is, in the

initialization phase, very dependent on the selected initial values of

range, course and speed of the target.

The initial values of the elements of the covariance matrix for

the estimation error have also an important influence on the initial

track.

One method commonly used for selecting initial data for bearing

only trackers, is to utilize the knowledge of range reach of the bearing

sensor. The argument is the following: If a target is detected at some

time TD, that could not be "seen" ky the sensor at times < TD, the

reason is that the target has just entered the reach area of the sensor,

and is opposing the observer. The initial range is therefore given by

the sensor specifications, and the initial course is towards the observer

(Initial velocity still has to be picked out of the air).

Since the range reach of the sensor usually depends on the environ-

mental conditions, this method frequently will give very bad initial data.

The purpose of this chapter is to derive an alternative method, where

initial data can be selected in a more optimal manner, based on calcu-

lations performed on a given set of bearing observations from the moving

observer, and the position history of the observer.

The following derivation will also give us some valuable insight

in the observability problem, and show the conditions under which the

range/velocity ambiguity ca-n be resolved based on bearing observations

only. -48-
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4.2 Geometric Problem Visualization

A typical geometric situation is depicted in Fig. 4.1.

YTC

0
x

Fig. 4.1 Geometrical Situation

A moving observer, 0, observes a number of bearings to the target,

T, at the time points tO, ti, t 2 ,..., where the time difference between

any two consecutive bearings may be different.

The following assumptions are made:

1. The target is moving with constant course and speed.

2. The observer's velocity and course are constant between
the observations. (This restriction will be removed
later).

3. The bearings are noise free.

Assumption number 3 is obviously not true in reality. However, by

use of this assumption it is possible to arrive at certain results.
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In the discussion of these results later in this chapter, methods for

reducing the effect of this assumption being violated will be suggested.

4.3 Calculation of target velocity components.

Based on three consecutive bearings •0. ý1' 02, and an assumed

start range, RO, the target velocity components can be calculated. We

have the follow- three equations (see also equation (3.25)):

AN (At)
=tan(O-~ (4.1)R 0+AL (At1 ) 1-00

0

(Ro+AL (Atl)) 2 + (Atl (4.2)

1 p2AL.• N (At2

• = tan (2I)(4.3)
R R1 + ALp (At 2)4-1

where

At, =tl1-t0 (4.4)

At =t-t (4.5)
2 2 1

or generally

A = t.-t i=1,2 (4.6)

anid

A (At.) = cos i [v Ati-Ax I - sin Pi 2l[v At. - 1(4.7)N i i-I s 1 _1. A s
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AL p (At.) = sin i(V xAti-AX s ] + cos -v i AtVi.-Ays 1 (4.8)

In equations (4.7) and (4.8), assumptions 1 and 2 from section 4.2 are

used. The target movement along x- and y-directions in the time inter-

val At. are given by v At. and v *At. respectively (no aczeleration1 x l y 1

term), while the observer movement along the same axis in the time

interval are given by:

Ax = V At + 1a At2 (4.9)s i_1 sxi_I 2 sxi_1 2

Ay = v At + 1 a At2 (4.10)s-i-1 sY i_1 2 5 i- 1

If the observer position increments in the time interval At. is calculated1

on the basis of equations (4.9) and (4.10), assumption 2 is necessary.

However, by deviding the time interval At. into smaller intervals,1

and calculating AxS and Ay si_ as a summation of position increments

over these intervals, provided that velocity and acceleration data for

the observer in these intervals exists, the assumption of constant

velocity and course can be changed to yield arbitrarily small time

increments.

Now, from equation (4.1) we have:

AL N (Atl) = tan(l-€0 ) (Ro + AL p(At 1 )) (4.11)

Inserting from equation (4.11) into equation (4.2) gives:

R1  (R0 + AL )) - 1 + tan2 (•l-¢o) (4.12)

0
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Then:

R = (R0 + AL p(At)) /cos (4i-40) (4.13)

Further:

R0+sin •0 [vxAt 1 -Ax s] + cos %0 [vyAt 1 -Ay S0
R 1 - o • - 0 (4 .14 )

Cos (4 I-Y~

Inserting for &,(ptI&) and AL p(AtI) in equation (4.1), gives, after

some calculation:

At1 0 sin (4.15))v IAx + tan ýl(Vy A- Y~o + RO os in {ý1ý4.15)
1 Cos )1

Now, inserting for v from equation (4.15) in equation (4.14) gives:

R, R s C0 CS + (vyAt 1 -AYso)Cos (4.16)

We also insert for v from equation (4.15) in the equations forx

ALU(At 2) ar.d AL p(At2) (equations (4.7) and (4.8), with i=2). The

results are:

At2 2t

ALNAt2 -ýt R0  sin(ý31-00) +. cos ý,'2A A

At
- sin = Ays - A~ s) (4.17)

At2  At2

AL (At2) = 2 R0 tan 0l'sin(ý,-%) + sin i 2 AXs0-Asl

p 2 At 1At t o s

Co Co At2 .2 cAosl) (4.18)
+ O -- • y CS* Ay 0 .so'Sn2*I+AYsI" ,



-53-

From equations (4.17) and (4.18) we find that:

ALpA2 =(At At) tan ýi + 1-o [v [VAt2-Aysl (4.19)
p~ (A 2) =ALN(At 2 ). tan [v s

Then we have:

R0 cos 40 + MIN(At 2 ) sinel + vy(Atl+At 2 ) -(AYso+Ay sl)

1 p 2 cos 01
(4.20)

Inserting for (R1+ALp(At 2 )) from equation (4.20) in equation (4.3) gives:

ALN (At2 ) 1o AA

tan(O2-0 1) R0 Cos C 0 + (At2)sin 01 + vy(Atl+At2)

(4.21)
- (Ays0 4AYsl)

Since ALN(At 2 ) given by equation (4.17) is not a function of vy, and

since:

AtI+At2 = t2-t0 (4.22)

equation (4.21) can be solved for v . The result is:Y

- 1 AIN•(At 2 )cos 02 Ay Ay
y t [ - R cos 2+ Y + (4.23)

Inserting for ALN(At 2 ) from equation (4.17) gives our final result for

Vy

____ •At 2  sinQP1 -* 0 )cos •2
=- 1 R - - cos 0 + Ay + Ays +Y t2-t 0 0At 1 sin( (2-y 1) s

cos t /At2  Nfl
sin(5- [Cos Ax Ax - sinýl --•t Ay 0 - Ys

(4.24)
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Lastly, inserting for v from equation (4.24) in equation (4.15), gives
gy

our final result for vx

V 1 ~~[RQ)j~t sin (ý,-ý0)siný2  -sin4+ Axs + Axs
x t2--j 0 S., 42-01)

in2 f/ 2 At2-sAX A sinýlA-, AYs-s
sin ( 2-€1 ) sy

(4.25)

Equations (4.24) and (4.25) are the main results in this section. We

are interested in their form for a couple of special cases:

Case 1:

At =At 2 =At (4.26)

Observer non-maneuvering, i.e.:

AXsO AX sl ` vAsx.t (4.27)

AYso = Aysl = vsy.At (4.28)

So { sin (€I-0) siný2

Sv + A - sin (4.29)Vx sx t sin ( (• -1 i)

s0  {sinCrl-c0 )cos¢2  4
A=tv + i(4 - cos (4.30)

As we can see from equation (4.29) and (4.30), the target velocities

that can be determined on the basis of any three consecutive bearings

from a non-maneuvering target, will depend on the range R0 (can be
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transformed to yield R by solving equation (4.16) for R after in-
1 0

serting for v . Similarily, the range dependence can also be transformed
y

to R

It is important to realize that the same dependence on range exists

when the target velocities are calculated by the Kalman filter. This is the

range/velocity ambiguity in a nut-shell!

Case 2:

At =At =At
1 2

Observer not moving at all, i.e.:

Axs0 = Axsl = 0 (4.31)

Ays0 = Aysl = 0 (4.32)

Rv sin 1-•0)sin 2 sinx 0 2- " si(ý2 - sin 40(433

V r. in( 1-00 )Cos 0 2 Co } (.4
y= 2 {in 7O -2 (30)

In this case, it is possible to determine the target course in-

dependent of range. We have:

-1 /Vx'N _itsin(o 1-00)sin ý 2-sin (ý 2-41)siný0

C \y/= ancoP-sin( _0 )o~ CO

The target velocity, however, will still depend on the range.

These two special cases also can be used to give guidelines for an

intelligent observer maneuver strategy: Start tracking while the

40
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observer stays put, and determine the target course. When the observer

starts moving, preserve the determined target course in the Kalman filter

(by keeping a lcow, may be artifically). Then the filter will quickly

adopt the correct range. An indication of this can be found from

equations (4.29) and (4.30). We can write:

v v + R-K
tanC = y - (4.36)

T vy Sy +RK2

where CT is assumed kown, and K1 and K2 are constants, independent of

range. Equation (4.36) can be solved for R, to give:

v -v tan C
sx sy TR = -x sh (4.37)K2 anT - 1

4.4 Calculation of Initial Range

By inclusion of a 4th bearing observation, the results of the previous

section can be extended to include the determination of the initial

range, provided the observer>is maneuvering during the observation

period.

When a 4th bearing is included, the following equation can be

included:

aR+(At 3 ) -tan( (4.38)

R +tAL (At ) tn~- 22 p 332

Here, R is given by:
2

2 (R 1+AL p(At2)) 2 + (A.NAt 2) 2 (4.39i
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Since, from equation (4.3):

AL. (At2 ) = (RI+AL (At2 ))tan(ý2-4i) (4.40)

equation (4.39) can be written:

R fRl + AL (AtI/csF-) (4.41)

i Now, by use of equation (4.20) we get:

RocosO + ALN (At2 )sin01 + v (Atl+At 2)-(Ayo+AYs)"• R2 =4.42)
2 Cos i cs( 21

The next step is to insert for ALN(At 2 ) from equation (4.17) and for v fromy

equation (4.24) in equation (4.42). After some manipulations, we get the

following result:

At2  /At 2  ) At2  A

R- t Rosin(ýl-ý0) + cos Ax - AX• s - sin ,l~t- y so )

2 sin(O 2-_)"

(4.43)

Next, the two other variables in equation (4.38), A(At 3 ) and AL (At3)
ALN(t3) p 3

have to be calculated. We have:

ALN (At 3 ) = cos *2 [vxAt 3 - As 2] - sin • 2 [vyAt3-Ays 2] (4.44)

AL (At) = sin *2 [v At3 - AX2 ] + cos [2 [vAt 3 -Ay 2 ] (4.45)

Further:

AL (At) ta tv At -Ay 3(4.46)S(3) AL(At 3) •tan, 2 + cos 3 s2

-FE

1 1 m w • N ul am m n m ml•m mu m ~ m i m w u u m n ~ mm U m l~ m
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Now, inserting for AL p(At 3) from equation (4.46) in equation (4.38) gives,

after some rearrangements:

cos 0 3
ATN (At3 ) sin(O 32) R 2 CoSO2 + v At3 - AYs 2  (4.47)

Next, we, have to develop AlN(At 3 ) further. Inserting for v x and vy from

equations (4.25) a. (4.24) in equation (4.44) gives, after some calculation:

ROAt3 rAt 3
AT, ~ 0 N' (A 'i(ý2- + cos ý 2 -t(Ax so+Ax si)-Axs2

ALN(At3) --t2t sin(cP2-•o +, o •2[t-0 sO + i A s 2)•

20 2 20 i
(4.48)

- sino2 k[t- 0 (Ay-O+AYsl)-AYs 2j

Lastly, by inserting for (At3 ) from equation (4.48), for R2 from equation

(4.43) and for v from equation (4.24), equation (4.47) can be solved foi.y

R 0 The result is:

sin(O 2 -01)-.At 1 {sin 3 (At3 (Ayso+ y sl )-(t 2 -t 0 )AYs 2 )-cos 3 (At3 (AXs 0o
RO = Atl-At 3 sin -0 sin(-I -

AXs)-(t 2 -t 0 )Axs 2) + sin (x3 -P 2) (t -tO) i0os0l (At2Axs0-AtlAxsl) -sin4I(At 2AyS0 -AtlAysl1
At2 (t 3-t 0 ) sin ) sin(3

(4.49)

Equation (4.49) is the final result in this section. An important special case

is obtained when:

At, =At 2 =At 3 =At

t = 2At (4.56)

t3-t =3At

S•'' ..... ..30-
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Then, equation (4.49) can be written:

sin( 2-•I){sin 3 (Ays0+AYsl-2Ays2)-cos3 (Ax s+AX sl-2Ax s2) +
R0 =0 sin (43-.0) sin (12-ý1) -3 sin (4I-ý0) sin 3-ý2)

3 sin(43 -ý 2) . {cosýl (Ax s 0-Ax sl -sin 1 (AYs0-Aysl) (4.51)

If the observer is not maneuvering, we have:

A hso =xs1 = Ax s2

and (4.52)

Ayso = Aysl = Ays2 I

From equation (4.51) it is then easy to see that R 0=0, meaning that range

can not be observed with a nonmeaneuvering observer.

When range R0 is calculnited from equation (4.49) or (4.51), equations

(4.24) and (4.25) can be used with this range R0 to calculate the

target velocity components.

Appendix F gives a numerical example on the use of the results in

section 4.3 and 4.4.

4.5 State vector initialization.

Due to obvious reasons, the single Kalman filter case and the parallel

filter case have to be treated separately under this heading.

4.5.1 Single Kalman filter case.

The results in Section 4.3 and 4.4 are based on the assumption of

noisefree bearings. They can, however, be used directly as initial data,

with the associated initial values for the covariance matrix as given in

N section 4.6.3 and in appendices G and H.

B-
_M=
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In the following, however, two different methods will be suggested

in order to improve the initial values of velocity and range. The approaches

will depend on whether the observer is maneuvering or not over the time

period [0, NT], which we will call the initialization period.

We assume that the following data are available:

1. A sequence of bearing observations, ZN = {401 •I'.' ON

2. The observers position increments, Ax = {Axs0 , Ax sl.. Ax }

and Ays = {AYso,Aysl... ,ySN-l

Case 1, Observer Maneuvering

Step 1: Calculate: R.= f(ýi' i+l' Oj+2' i+3)' i=0,1,...,N-3. The

function f is defined by equation (4.49).

Step 2: Calculate: vxi = f (R., i' 4. 2+i' .i+2)' i=0,1,...,N-3.

v f 2(R ý i+l i+2 ) i=0,1,...,N-3.

where the functions f1 and f2 are defined by equations (4.25)

and (4.24).

Sp: Calculate the initial velocity elements as:

1 N-3 (4.53)vx0 = i---2 vi (.3

1 N-3 (454)
Vy0 = N-2 v

i=0

Step 4: Calculate the target course as

CT = tanlC0) (4.55)
TvVYO
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Step 5: Calculate initial range, R0 , from equation (4.37).

Step 6: Initial bearing is given as 0"

Step 7: Initial position elements are calculated as:

x0 =x 0 + R0 sin (4.56)

Y0 Ys0  + R0 Cos 0 (4.57)

Step 8: Starting with 2 = [x0 Y0 Vx0 VY]T process the bearings

through the Kalman filter, to give the

resulting state vector at t = t., where the track is offically

started.

Case 2, Observer not maneuvering

In this case, equation (4.49) is worthless, and no range information

can be subtracted directly from the bearings. In this case, the

following steps are proposed:

Step 1: Select R as the sensor's maximum range. (If possible,
0

take environmental conditions into account).

Step 2: Calculate: Vxi = f 1 (Rif, i' Pi+l' )i+2

SV~y i = 2 Ri • i i+ 1 ' ý i+ 2 )

R.=f(Rl v .,ct,

i+l 3i yi i+l

Si =0,1,2,...,N-3. The functions f and f are given by

equations (4.25) and (4.24), while the function f3 can be

found by an extension of equation (4.16), as:
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:•R. -Cos + (v iAti-Ax si)-••Ri. =3. Y. .-53 (4.58)

1+1 CosScos i+l

Step 3: CalculaL.-:

N-3SV = - V (4.59)

N-3
V y =T_2 F,0 vyi (4.60)

Step 4: If target identification and classification has been performed

the knowledge of this target class's maximum velocity, vMAX,

will presumably be known. Otherwise, some value of v.. can

always be specified for submarines, surface ships, etc.

Calculate the initial velocity components as:

v 0 min . v* (4.61)

x O

Vy =min -~ * v yi vy (4.62)

Steps 5-9- Same as Case 1, Steps 4-8.

4.5.2 Parallel Filter Case

For this approach, when we have M parallel filters to initialize,

a slightly different initialization scheme has to be suggested.
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We assume that the same data are available as in Section 4.5.1,

and we will have the same two cases, depending on the observer's maneuvering

scheme:

Case 1, Observer Maneuvering.

Steps 1-5: Same as in Section 4.5.1, case 1.

Step 6: With a previously defined AR1 , calculate R0i, i=1,2,... ,M, as:

M .1

R i = R0 - F ER1 + (i - •)AR, (4.63)

Step 7: Calculate the velocity components v and v from equations

(4.25) and (4.24), i=1,2,...,4M.

Step 8: Initial bearing for each of the M filters is given as 0 0
i=1,2,... ,M.

Step 9: Initial position data are calculated as:

xOi = xs0 + R0 i'sin f0 (4.64)

Y~i = YS0 + R0 i cos 0 (4.65)

i=i,2,... ,M.

Step 10: Same as Section 4.5.1, case 1, step 8 for each filter.

Case 2, Observer not maneuvering

Steps 1-6: Same steps as in section 4.5.1, case 2, resulting in R0 at

the end of step 6.



-64-

Step 7: With a previously defined AR2 > AR1, calculate Roil i=12,...,M,

as:

RSi = R0 - i.AR2  (4.66)

(R0 is assumed to be near the maximum range for the bearing sensor,

and any R0i > R0 should not be necessary).

Steps 8-11: Same steps as Case 1 above, steps 7-10.

4.6 Covariance Matrix Initialization

The next subject to be addressed, is the selection/calculation of

initial values for the covariance matrix, P0. We will only derive the

initial covariance matrix for the Cartesian system model. (Necessary

transformation to the Polar coordinate system case can be done through

equation (3.48)).

Since the philosophy behind the parallel filter approach is totally

different from the single Kalman filter approach with respect to assumed

initial accuracy in range, these two cases have to be treated separately

also under this heading.

4.6.1 Single Kalman Filter Case

Three different approaches to covariance matrix initialization will

be outlined under this heading.

4.6.1.1 Aidala's Approach

Aidala [11] has treated this subject very thoroughly, however, his

model of the target motion analysis problem has no process noise.
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Consequently, his time update equation for the covariance matrix has

the form:

Pk+l,k = f(T)* Pk,k0 (T)T (4.67)

i.e., no increase in uncertainty with time, since the term 6(T)Vk O(T)T

from equation (3.18) is lacking. Since his conclusions depends entirely

on this unrealistic assumption, his results are not applicable directly.

Aidala proposes to select

P = "2 *1 (4.68)
0 0

and shows this selection's superiority in terms of covariance matrix

stability over the selection

S2
r

2
r

2
P0 v (4.69)

vo 02

By a pseudolinear formulation of the tracking problem, obtained

through a nonlinear transformation, Aidala transforms the nonlinear

observation equation to a linear equation, with the nonlinearities

embedded in the observation noise (see also [7]. The measurement

standard deviation for this model turns out to be:

az =ERk.k-lIa] Vrk(4.70)
kra0
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and this is the only term containing R and 00 in the covariance equations

for the pseudo-linear filter.

The oovariance matrix of the pseudolinear filter, P k,k' is related

to the covariance matrix of the orilinal filter, Pk,k' in the following

way, if equation (4.68) is used for initialization:

P =a2 (4.71)k,k 0 -,k

By selecting o0 = R0 , equation (4.70) can be approximated as:

Y 0 •Wk (4.72)""k

and the covariance equations for- the pseudolinear filter is completely

independent of range and a0(P0,0

However, the reason why this form is possible, is the form of the

covariance time update equation given by equation (4.67). If equation

2(3.18) was used, the initial value of the variance, 20, can not be

collapsed into the measurement variance term, as given by equation

(4.70).

Now, is it feasible to adapt Aidala's results for our model, where

time updating of the covariance matrix is performed according to equation

(3.18)?

This question is not possible to answer without performing simulla-

tions.

For the case with a nonmaneuvering observer during the initialization

phase, it is therefore suggested to incorporate the selection of the

initial covariance matrix
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2

R0 0 R0 "1 
(4.73)

as one possibility to be explored.

4.6.1.2 General Approach

The most commonly used initial covariance matrix is probably of the

form:

P 1l P 1 2  0 0

P21 P2 2  0 0

S~P0- =P0=4.)
PF-i 0 0 0 P 3 3  P 3 4  (474)

0 0 P 4 3  P4 4

where:

2 2Pll = o~20 (R0 ".0)2 + sin 00-R0 (4.75)

P 1 2  P 2 1  cos 0sino [ 0* S0FR- (R ) 2] (4.76)

P sin2 * (R0G ) 2 + Cos22 0-*R2 (4.77)
p2 2  si 0 00R0o )

P33 = Cos 2cO (v0-c + sin 2 c02 (4.78)

0 v0

p34 = P4 3 = sin c 0 .cos c0 [(a2 -(v0 - 2] (4.79)
34 0 00 C0

2 2 2 2
p4 4 =sin2c(v cr + Cos.c0 (4.80)

The usual (ad hoc) selection of parameter values in equations (4.751 -

(4.80) is the following:

LJNE I, w . m . m l . • m • , ., m m n ~ ,, l m l m m ~ • . W N u m ,, m~
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ý0 = the observed bearing at time to

a = the sensor's standard deviation
0

R0 = the sensor's max range.

= - (the sensors may. range)
0 2

C0 =

v0 , Gc0 and (Y0 : completely picked out of the air. As an example:

v= 10 m/sec

a" =300co0

0a0 = 20 m/sec.
CV 0

4.6.1.3 Suggested Approach

If the state initialization methods given in section 4.3 and 4.4

are used, a better initial covariance matrix can be obtained.

Like in the state vector initialization case, the approach will

depend on the observers maneuvering scheme:

Case 1, Observer Maneuvering.

Step 1: Range can now be calculated from equation (4.49). Calculate

the variance 20 through the approach given

in Appendix G.

Step 2: The velocity elements can be calculated from equations (4.24)

and (4.25). Calculate the velocity elements of the covariance matrix
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through the approach given in Appendix H.

t When the "smoothing" approach given in section 4.5.1 is used, the

resulting initial values of the state vector should be better than the

resulting initial covariance matrix from this approach will indicate.

However, since we are interested in an initially "open" filter (a

filter that responds to the measurements), we suggests not to take

this into account. If the actual accuracy obtained through the methods

given in section 4.5.1 turns out to be much higher than the resulting

covariance from this approach, it will, however be worthwhile to take the

"smoothing" effect into account also for initial covariance calculations.

4.6.2 Parallel Filter Case

With M filters running in parallel, we are interested in each

filter being as "stiff" as possible in range, since it is likely that

one of the filters have an initial range close to the correct one, as

will subsequently become apparent through an observer maneuvre (see

section 3.7 and 4.5.2).

For the parallel filter approach, the only difference between the

two cases: observer maneuvering/not maneuvering, is the size AR between

the initial values of range for each filter (see section 4.5.2, AR or1

AR).
2

The following approach is suggested:

Ste : Select 0R

NIL (R. .. 0



-70-

Step 2: Select 0 = the sensors standard deviation.
*0

Step_3: Given the initial range R i=l,2,...,M, calculate the

position covariance elements for each filter from equations

(4.75)- (4.77).

Step 4: Calculate the velocity elements of the covariance matrix

for each tilter through the approach given in Appendix H.



5. MANEUVRE DETECTION AND HANDLING

Up to this point we have assumed constant course and speed for the

target. This assumption will now be removed, and we will allow our

target to make abrupt changes in course and/or speed, of random sizes,

and occuring at random time instants.

Several different approaches to the maneuvering target tracking

problem have been proposed in the literature. We will in the following

give a short survey cZ some of the most important approaches.

Jazwinski's [25] limited memory filtering approach is probably

the simplest approach. By preventing the covariance matrix elements

from decaying below certain thresholds, resulting in filter gains above

certain values, the target state vector dependence on the latest ob-

servations are increased. However, the tracking performance of this

approach during nonmaneuvering periods of the target will decrease

due to higher dependence on the observation noise.

The natural solution to this problem is to model the target under

the nonmaneuvering hypothesis, and in addition to ir troduce some adaptive

maneuvre detection scheme which can step in and give the filter limited

memory for a short period of time, after a maneuvre is detected (4],

[20].

A further extension to this approach is suggested by Willsky and

Jones [26], [27]. They suggest the possibility of simultaneously with

the detection of an abrupt system change, to estimate the size of the

change and to perform a state variable correction directly, in addition

"-71-



-72-

to give thie filter limited memory temporarily. Similar approaches are

outlined in [9] and [10].

Another avenue along which many researchers have been working, is

to model the target maneuvres as a semi-Aarkov process, whereby N possible

acceleration inputs are selected according to some a priori probabili-

ties. In its pure form, this approach requires an infinitely growing

bank of paralluý 'ilters, N initially, N2 for the second measurements,

etc. Different approaches to reduce this described growth are proposed

in the literature, in order to get practical, realizable filters

[14], [10], [21], [22], [28], [29].

Another interesting approach was proposed by Tenney et al. [24].

Two extended Kalman filters are operating in parallel, one with a

large artificial system noise covariance term added to give the filter

limited memory and thereby allowing it to track fast maneuvres, and

the other filter with small artificial noise, making this filter re-

stricted to tracking of constant course/speed trajectories. Maneuvre

detection is performed by comparing the behaviour of the two filters.

None of the approaches to maneuvering target tracking resumed

above, deal with a tracking scheme based on bearing only information.

Due to the low observability of the system,maneuvre detection undl.:

these circumstances are more difficult. Most of the papers above claim

for high observability in order to make efficient maneuvering target

trackers.

Another important fact to realize is the possibility to separate

the maneuvering target tracking problem into two subproblems:
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1. The maneuvre detection problem.

2. The maneuvre handling problem (i.e., When the maneuvre

is detected, what actions should be taken to allow the

tracker to adapt to the new target course/speed).

This separation is imbedded in the approaches given ii [4], [9], [24],

[26] [27], and will also be used in the approach propused in this report.

The lacking observability during time-periods when the observer

is nonmaneuvering, results, as we have seen in Chapter 4, in the

range/velocity ambiguity. Unless special preventing actions are

taken, the Kalman filter's reaction to a target maneuvre can be a range

jump as well as a course/velocity jump. The obvious preventing action

is to keep the range variance low, forcing the filter to adapt course/

velocity as a maneuvre detection reaction, and leave the range to target

unchanged. This seems, however, only feasible to do if we have arrived

at a stable target track with correct range prior to the maneuvre. If

the target maneu-vre takes place while the tracker still is in the initiali-

zation phase, with a poor linearization trajectory in range, our wish

2
is to keep a high zange variance CR in the Kalman filter, so that the

filter easily can arrive at correct range if/when the observer performs

a maneuvre, and range becomes observable.
2

These conflicting preferences on CR are among the reasons why
R

maneuvering target tracking is harder to solve for the bearing only

measurement case tban for cases with complete observability.

One possible way to resolve this conflict, is to make use of our

knowledge of the observers position history and future maneuvre in-

"tentions. If, for the global iterated filter case, the observer has not

S l l ii l l • il•2 i iI l i
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performed maneuvres during the iteration interval, and generally for all

the filter approaches, if the observer is not going to start maneuvering

in the near future, it is no point in keeping aR high, since range can't

be observed from the observations in any case. However, we will get a

possible conflict if the observer and the target are maneuvering at

the same time. The solution to this problem has to be decided upon

through simulations.

A proposed approach to maneuvre detection and handling will be

given in the following.

5.1 Maneuvre Detection

The most povcerful and best theoretical fundamented approach to

maneuvre dete-tion seems to be the generalized likelihood ratio best

described in E30]. This approach has been used by Willsky and Jones

[26], [27], by Tenney et al. [4], and is also suggested by Maybeck

[23].

Following the approach given in these references, two hypothesis

on the form of the innovation signal can be assumed:

H0:Ck = 1 (No maneuvre)

H1 : 'k = mk + 'lk (A maneuvre has occurred.)

where Vlk is a zero mean white sequence with variance:

2 plT+W(A
'Vlk = kpk,k-llc + k

If we restrict our attention to a "data window" containing the N

most recent observations, our generalized likelihood ratio test can be
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given by:

2 H0
k C. >

Lk = Ck- E 2 (5.2)

i=k-L H1

where Ck, L and y are design values which has to be decided upon through

simulations. ck is a (possible) varying term independent of the observed

residual values. If we define:

Ylk = ck-Y (5.3)

the likelihood ratio test can be given by

k 2 1•i >

2a 2 < Ylk (5.4)

i=k-L "V IiH0).li 0o

The reasons why we incorporate the possibility of having a varying

threshold ylk are the following:

1. We want to inhibit maneuvre detection during initialization

phase.

2. We want to inhibit successive maneuvre detections during the

same maneuvre.

3. We want to inhibit mianeuvre detections during maneuvering

"phases of the observer, if we have reason to believe that our lineari-

zation trajectory prior to the observer maneuvre is poor.

The moaning of equation (5.4) is obvious: The actual variance of the

innovation signal is compared with its expected value over the most

.W



2
recent L samples. If Ck becomes consistently larger than predicted over

the selected "time window", a target maneuvre is detected.

A few guidelines can be given concerning the selection of the design

parameters L, ck and y (alternatively L and ik):

L has to be selected as a compromise between fast detection and the

false detection rate. The longer time window the slower maneuvre detection

and the less prob•_ility for false maneuvre detection. The shorter time

window, the faster maneuvre detection, but at the same time, the higher

probability for false detections.

y can be decided upon by looking at the case with stationary

circunstances: Tracking of a target going with constant course and

speed, where our linearization trajectory is approximately correct.

With ck = 0 and the process noise covariance matrix Vk, the observation

noise variance Wk and the "time window" (decided by L) given, y can be

selected to give a false alarm probability close to zero.

ck has to depend on a number of parameters, and may have different

size and time dependence, depending on the state of the filter. We

may suggest the following structure of ck:

K e-c(k-k1 )T k > k
ck = 1 (5.5)

where T is the sample time, and k is the sample when a certain event

takes place, like:

1. Initialization

2. Maneuvre detection

3. Starting of an observer maneuvre
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The parameters K and a are event-dependent parameters which has to be

selected through simulations in order to give acceptable false alarm

probability in the transient-period following the actual event. These

parameters will also depend on the "time window" LT, on Vk, Wk' PO and

on possible direct manipulation on the covariance matrix following a

detected maneuvre.

The maneuvre detection approach described in this section should be

suitable for all the filtering approaches given in Chapter 3. Whether

it is the best approach to maneuvre detection, independent of the filtering

approach, is unknown.

For the iterated filtering approaches givern in Chapter 3.4 to 3.6,

we would suggest to include an the simulation study an investigation on

which value of the innovation signal that should be used in equation (5.4),

the first or the last iteration value.

For the parallel filter case, we propose to run the maneuvre detection

algorithm only on one filter, namely the filter which, at each time in-

stant kT, has the highest probability function p( Ri /Zk)

5.2 Actions Following a Detected Maneuvre

As described in the beginning of this Chapter, the most appropriate

action to take when a maneuvre is detected, is to give the filtering

algorithm limited memory temporarily, allowing the filter to adapt to the

new target course and speed more easily.

One important .act to realize, hm.?ever, is that there is a certain

time delay between the beginning of a maneuvxe and its detection. This

time delay, say At, depends on a number of factors, however, some nominal

value of At should be possibla to obtain through simulations.
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" If we don't take this time delay into account, and impose limited

memory on the filtering algorithm only from the time instant kT, when the

maneuvre is detected, the observations taken during the intermediate

period from the occurrence of the maneuvre and its detection, will not be

utilized optimally. The result will be an accumulated range error, that

can not be driven to zero unless the observer performs a maneuvre after

the target maneuvru.

In order to reduce this range error, even for the case of a non-

maneuvering observer subsequent to a target maneuvre, the following steps

are suggested:

1. When a maneuvre is detected, fetch a stored version of the

state vector and the covariance matrix valid at time

(kT-At) from the computer memory.

2. Give this time version of the filter limited memory by increasing

the velocity elements of the covariance matrix.

3. Re-integrate all the observations taken in the time interval

[kT-At, kT].

The result of this iteration will be a discrete jump to a more

correct position and velocity for the state vector at time kT, the same

time instant when the target maneuvre was detected. The effect of this

approach is thus the same as achieved hy Willsky and Jones [26], [27],

and estimate of the size of system change, and a direct correction of the

state vector. The methods are, however, different.

The prize that has to be paid for this achievement, however, is

substantial. The following time sequences has to be stored in the computer

memory:
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Observation sequence:

Zk = {zkTAt, Z(k+1)T-At*' zT} (5.6)

Observer x, y-position:

X {x(kT-At)* , x 1 (5.7)
-kT

Ys s(kT-At)'" Ys } (5.8)

Target state vector

IA
Sx~~k 1{•-T-At""'----T(59

covariance matrix

ý 1Pk'r-At'- ,..Pk} (5.10)

(Since we don't know when a maneuvre detection might occur, we have to

store the sequences given in eq. (5.9) and (5.10), even if the only

values of interest to us at the time of maneuvre detection are

It is interesting to realize, that in the case with global iterated

filters, the sequences given by equation (5.6)-(5.8) and (5.10) are already

stored, if MT > At (see section 3.6). If we adopt the global iterated

approach, it is not necessary to store the state vector sequence given by

equation (5.9). The state vector at time kT-At can then be found by time-

backdating. This approach should be investigated through simulations.

5.2.1 Imposing Limited Memory on the Filter

The course and velocity variance can be calculated from the

velocity elements of the covariance matrix (both in the Cartesian and the
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Polar coordinate system case) through the following equations:

2 . 2 _+ (5.11)vY p 3sin c (p30+p,3)snc c +s c (5.11)
v 33 444s

S= [P33 Cos c + (P34 +P 43)sin c cos c + c(5.12)

Following a target maneuvre detection, we now want to increase

a by Au and ( Y Au . Then, if we define:C C V V

Sv = (a +A ) 2-a2 (5.13)

6c (a+A)2 -a2 (5.14)
c c c

the result on the velocity elements of the covariance matrix will be:

2 2 2

p + P 3 3 + v2 cos c •6c + sin c 6v (5.15)

P34 P 3 4 + sin c cos c[ 6 v - v 26c] (5.16)

P43 P4 3 + sin c cos c[6v-v 26c] (5.17)

k2 2 2
p44 P4 4 + v .sin c'6c + cos c'6v (5.18)

5.2.2 Actions Dependent on the Filtering Approach

The design parameters in the maneuvre detection algorithm, and the

actions following a detection, may very well depend on the tracking

approach, i.e., the mathematical models of the system dynamics and the

observation, and the version of the filter equations. A "tuning" of the

maneuvre detection algorithm to each filtering approach may therefore

be necessary, and special actions following a maneuvre detection may be
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necessary to get the best possible performince for each filtering approach.

In the follcwing we will discuss some of the actions that may be

necessary (and feasible) to take for the global iterated filters, and

for the parallel filter approach. Only simulation results can tell,

h........,r,hther further "tuning" of parameters or special actions can

give better performance of an individual filtering approach, so this topic

will not at all be exhausted by the following discussion.

5.2.2.1 Global Iterated Filters

The selection of the process noise covariance matrix Vk is among

the parameters that influence the "covariance level" of the filter, and

thereby the size of the elements of the gain matrix Kk. in fact, the degree

of limited memory can, to a certain extent, be controlled by Vk.

Generally, Vk is decided as a compromise between tracking performance

when the target is going on straight course and speed, and the filters

ability to track small maneuvres (without alerting the maneuvre detection

and handling-system).

Now, for the global iterated filters described in sertions 3.6.1 and

3.6.2, a better tracking performance can be obtained during nonmaneuvering

periods of the target with larger values of the elements of the process

noise covariance matrix Vk. The reason for this is the smoothing effect

that is a resut of the iterations, tending to stabilize the target velocity

vector when the target is moving with constant course and speed.

At the s&me time, larger values on the eleinmnts of Vk wiil allow the

filter to follow small target maneuvres better.

As a result of this, however, the maneuvre detection problem may

turn oui. to be more difficult, since higher values of the elements of the
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gain-matrix Kk will tend to decrease the value of the innovation signal

during target maneuvres, at the same time as the expected variance of

the innovation signal will increase due to higher values of the elements

of the covariance matrix (see equation (5.1)). An obvious result will

be that different values of the design-parameters L, y and ck have to be

found.

If the itei ion interval E !k-:)T, kT], Iprior to the maneuvre

detection, is larger than the interval [kT-At, kT], where At is the

nominal time delay between the occurrence of a maneuvre and its detection,

4.e., if NT > At, an obvious action to take is to decrease the iteration

interval temporarily in such a way that it is contained in [kT-At, kT].

(Premaneuvre observations should not be taken into account when post-

maneuvre course and speed calculations are performed). Since the ob-

servations taken in the time interval [(kT-At),kT] comes from a

maneuvering target, it might even be interesting to look at the possi-

bility of deviding the iteration interval [(k-N)T, kT], N = At/T, into

subintervals, so that the observations contained in each sub-interval

are more consistent with the constant course and speed hypothesis on

which the mathematical model of the system dynamics are built. A reali-

zation of this idea in the global iteration context could be a iteration

interval [(k 1-NI)T, k1T], where N1 < N, starting with k -N1 = k-N, and

finishing when kI = k (a sliding iteration "window" over the greater

iteration interval [(k-N) T, kT]).

The "serial" filter approach, which is a special case of the global

iterated filter (see section 3.6.3), will also need some special treatment.
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First, maneuvre detection should be made on the basis of the

innovation signal at time k, Ek. (As can be seen from equation (3.96)

this approach has, formally, two observations, Z and Z-N' and

consequently two innovation signals, Ek and e
k k-N

When a target maneuvre is detected, we propose to reinitialize

tle filter. It is assumed that we have NT > At (this is one of the

design criterias for N). The reinitalizing sequence will consist of

the following steps:

1. Initialize a single Cartesian Coordinate System filter

with

~O ~k = 3c-N(5.19)

and

'0 =22k,k (5.20)

where P22k,k is the lower diagonal part of the co-

variance matrix for the serial filter, given by:

l) lk,k P12k,k]

Pk,k - 2lkk P22kk (5.21)

Each of the submatrices in equation (5.21) are 4 by 4

matrices.

2. Run this single filter from time (k-N)T up to time

(kT-At). (Time kT is the time when the maneuvre

was detected).

irk,
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3. At time (kT-At), impose limited memory on this single

filter as described in section 5.2.1. For reasons of

convenience of notation, we now define

Sk 2T - kT-At (5.22)

Then after increasing the velocity elements of the covariance

matrix as described in section 5.2.1, the resulting value of the

covariance matrix at sample k2 is given by P2. The state

vector is given by 42"

4. Run the single filter from time k2T up to time W, where a

discrete jump in the position and velocity at time kT will

be the result (as compared to Xlk of the serial filter at

time of maneuvre detection).

5. Continue to run the single filter on new observations up to

time (k2 +N)T. Now the full serial filter can be initialized,

with the following initial values:

P k N0
P0 = (5.23)

and

-= (5.24)

5.2.2.2 Parallel Filters

As was proposed in section 3.7, the number of parallel filters can

gradually be reduced from M towards 1 as the filters with unlikely ranges

are being pruned off. It is therefore obvious that we have to consider
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two separate cases for maneuvre detection with this approach. namely:

A. Maneuvre detection when the filter with correct range is
still not recognized.

B. Maneuvre detection when only the filter with correct range
is updated.

In order to save computertime in Case A, we propobe to run th'

maneuvre decection algorithm only on one filter, namely th2 filter which,

at each time instant kT, has the highest probability function p(Ri = F/Zk)"

(Intuitively, it don't seem likely that one of the parallel filters will

be better in identifying a maneuvre, since range is not observable. If

a is kept low, however, any of the filters should be able to detect a

target course/speed change).

For the parallel filter approach, it seems likely that we can give

up our claim to take the detection delay At into account, without degra-

dation in tracking performance, so this will be proposed. The reasons

why this is possible, are the following:

1. After maneuvre detection, independent of case 1 and 2 above,

we intend to reinitialize all the M filters, with different

ranges centered around:

Case A: The range calculated from the state vector

given by equation (3.110).

Case B: The range given by tL.e remaining fi lter.

An eventual accumulated range error

due to the detection delay At, will

then be picked up by one of the re-

initialized filters.

-&V
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2. In case A, the range for all the remaining filters may

be wrong anyway, even at the time when the maneuvre started.

3. If the time delay should be taken into account in case A,

we would have to store the state vector and the covariance

matrix for (in the worst case) all the M filters over the

last N samples, where NT > At. This would claim for a lot

of comniiter memory ::apacity.

The re-initialization values for the state vector and the covariance

matrices for the M-filters should depend on the filter status (case A

or B) at the moment of maneuvre detection:

Case A: The center-range filter's s3tate vector is given by

equation (3.110). From this state vector, the center

range R0 can be calculated. Then, selecting the range

difference between the filters, AR1 , each filter's initial

range can be calculated from equation (4.63), and the

initial position data subsequently from equations (4.64)

and (4.65).

The reinitialization values for the velocity components

could either be calculated from equations (4.24) and

(4.25), or we could simply give all the M filters the

same velocity, given by the state vector at the moment

of maneuvre detection (equation (3.110)), and let the

Kalman filter algorithm adapt the velocity components

to each individual filters range.

Case B: Center range is given by the remaining filter.

Since, in this case, range is assumed to be

more correct, the range difference between each

filter after reinitialization should be much less

than in case A. With a selected AR2< ARI,
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eavh filter's initial range can be calculated from
equation (4.63), (substitute AR2 for AR1 ), and the

initial position data subsequently from equations
(4.64) and (4.65).

Since, in this case, the range difference between

each filter is smaller, the remaining filter's velocity

components can be used as initial values for all the

M filters.

Concerning the re-initialization values for the M covariance matrices,

we propose to consider two possibilities:

1. Use the initialization procedure described in section 4.6.2.

2. Use the covariance matrix for the remaining filter (case B),

or for the filter with highest p(fli = R/zk)(case A), but

modify its elements in the following way:

P lI P + cos 2chY *"(Ri-R0)

2 2 _2
P12. p 1 2  - sin c0 Cos 0.OG0(R,-R0)

1 0 02 2 2P2i P10 sin •0 Cos •0- (Ri-R)

01 21P2 2 2 22

s•~2 • "+P22 sin (0"5 •(Ri-R0)

where R0 , p1 1o, p1 2 , p2 1 0, p2 2  and are referring
0 0 0 02

i to the center filter, and Ri, P1 1 1 Pl 2 i p2 1  and

22i 1 ,2,...,M are the initialization values of
1

the position elements of the covariance matrices for

RK the M parallel filters.

In addition to this , impose limited memory on the

filters by increasing the velocity elements of the co-

variance matrices as described in section 5.2.1.
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Which of the two proposed methods for covariance matrix re-

initialization that should be selected, has to be decided upon through

simulations, as the procedure giving the best result.



6. SIMULATION GUIDELINES

The development of filtering approaches, initialization routines

and maneuvering target tracking approaches given in the preceding chapters,

have to be verified and compared through an extensive simulation study.

Each algorithm should be optimized with respect to design parameters

like process noise variance, maneuvre detection parameters and actions, etc.,

before comparison between the different approaches can be performed.

In order to arrive at correct conclusions, the target-observer

geometry used in the simulations are extremely important. On the other

hand, in order to reduce the number of simulation runs to an acceptable

level, only a few different geometries should be considered.

The simulation study should further focus on two different problems:

1. The initialization phase, each filters ability to achieve

correct range estimate as fast as possible.

2. Maneuvre detection, ability to track a target through

different maneuvres (small/large course/speed changes).

The simulation results should be visualized on plots giving range

error, velocity error and course error as a functicnof time. x,y-plots

should also be provided.

It is believed not to be necessary to run Monte Carlo simulation

studies on all the 10 different approaches given in Chapter 3. A few

single simulation runs for each filter approach for a small ntmber of

target-observer geometry should reveal which approaches are worth further

study.

The most promising 2 or 3 approaches should then finally be compared

through Monte Carlo simulations.
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APPENDIX A

LINEARIZATION OF f()L

We have

+ tan - (
k) =R ( + k) + pk

V~d

Vyk

We intend to calculate

Df af af af

= • • •R •v •v (2
x y

af f 2 f 2 f 2 af2
F (4) 3R 4v 2 2 2 (A2)

0 0 1 0

0 0 0 1

In order to be able to calculate the different elements of P(Q), the

following derivatives are needed:

0 (A3)

(A4)
k atk plc
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]p Ac (A5)

aR k 0(A6)

avxk

=R 0
ayk

axk T* okW

apk= T sin4,,k (A&!
axk

=_T s=-T (AlO)

avyL

!a =TcoOSk (All)

Next, we define the following two variables:

A~k=(k+ ALpk) sin ýk + AL * - cosk (A12)

A k= (Rk+ ALp)cos k - A.Mksinlýk (A13)

Then we bave:-

"k 2 2 k Rk ~ ~ k (A14)

Ic Rk+1
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1 AL~k (A15)

Df I T [(Rk+AL k)cos ýk-AINk sin ýk TA =

2 2 (A16)
TV: R k+1 k

___1 -T[(R k+AL )sin k + ALMN Co Ok' -TA'-xk

2 2 (A17)
ayk N~ R k+l

=f Rk 'AIk (A18)

ýOk R k+l

~2 (A19)
-ýR Rj~

~Vk Rkl kl

af T[(R+A ~csi TkA~kilk - AL
TV-_ _ __ _ _ _ _ __ _ _ _ _ R R k (A20)

- k+1 Rk+l

ýyk I

Equation (A14) -(A21) can now be inserted in eq. (A2), and we have our

final result:

Rk(R.k+AL 1d -ALIk TAL -TALx
2 2 2 2
RRk "k~ R+l

RkAINk Rk+lLpk TALk TA
= ___ (A22)

RE k+l k+l Rk+l k+1

0 0 1 0

L 0 0 0 1



APPENDIX B

CALCULATION OF THE ADDITIONAL TERMS C ANDI FOR THE SECOND ORDER
GAUSSIAN POLAR COORDINATE SYSTEM MODA FI .

1. CALCULATION OF -2k

trace " P , i=1,...4 (BI)
Cki ~ iZ T kik~

Now, [Ofi/ 1 ] has already been calculated in APPENDIX A. We have:

3f_ Rk(RAL -ALk Tt ~ -TAIýL

R2 R2 2 2
Rk+l Rk+l Rk+l N+l

___ R~ R +ALk TAhLj TL

F (•) k+1 k k+l(B2)

af 3 0 0 1 0
a43

ýf 4 0 00 1

Next, we define:

Rk +1k '~

T -96A-

;fLk/+

F- 1 a (3
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RkLNk/Rk+l

rfT (k+ALpk Ik+l

P2 =L TL/kl(B4)

TAL k/Rk+l

The elemn~rts of the two 4. 4-matrices Fl and F2 are calculated subsequently:

-ALNk*Rk 2 2 2
fl 1 1 4_RkAp Ik (B5)

22
flCA Nl 2AL~k Rk] B6

12 4 pk

T.Rk 2 2
fl13 [(Rk+ 2AL~k)s ý + 2AL'N (R k AL1 k) COS (B7)

R+1

l 1 4  4 T*k -(RP- 1 - 2AI~k) co +k 2 AI~k(Ek+ Lpk)sin (B8)

Nk+1

12 2fl 1  [i- Akl P+, 2AI~k R](B9)

N'+1

El22= 4 tk+ALpk] (BlO)

Rk+1

El.T 2
23 4 Nc+1 k AakA~c (Bil)

"ik+.
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f131 T -Ri. 124 (B12)24 4 R2+L1  Sk
Nk+1

f13 1  P- RKfl 2 4  (B13)

f l_ 2 +2AL V (B14)32 4 R k+l k +k plc
Rk+1

2
2T~L~

f - 33- 4( BIS)

RN+1

2 2 2

f34 4 +l 2tL M6)

fl4 kfi2 (B17)

fi 42 [N- 23n 2ALk(R +t5Lp)] (B18)

2
fi T 2 (B19)43 4 "'i+l - 2 dx'Lyk]

Rk+l

fi =-fl (B20)44 33

R

11 3 [Lpk~c+1'LiCJk

Rk+1
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Tf21 = R 2 o AL AL (B23)

f 1 3  3 CO(k Ak A
R k+l

2 TRk 2 (B24)

14 3
~k+l

1 21B25)

f22 [- - ALPk 1 R hJ• (R

Rk+1

AL (B26)
Sf2 =- k

f2 2  Rk3SR~k+ i

T2 2E _~il~ (Rk+ALpk)ALxk] .(B27)

T 2- (B27)

f2 2 - R sin EAk k)A]k
Rk+l

T 2 in (R+~k A~k (B28)
f2 24- 3• [Rk+1sinS •k kAp)~k

(B29)
f2 3 1  f213

(B30)
f2 =f2

32 23

2T2 - 2 2 (B31)
3 ~ xk

R+1
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f2 = - " R3(B32)
34 3

Rk+l

f2 4 1 = f2 1 4  (B33)

f242 = f224 (B34)

f3 = f234 (B35)

T2 [2 A2
-2 T R • ,A k (B36)

f244 3k+l

Now, having calculated all the elements in the two matrices F1 and F2,

the vectorsk can be calculated from equation (BI). The result:

4•i. 7. fl.. "Pi
i,j=l 3 ij

4
Z f2..P.. (B37)

i,j=l

0

0

(•÷ th
where Pi. is the (i,j) element of the covariance matrix Pk,k"



2. CLUAINO

The matrix is defined by:

I a = 2 2f) (B38)

In order to be able to calculate Lk we first define te two matrices S

and T:

4 4 4
Efll P Z fl P ..... fi P

_ i=1 li i iii li i4

=" '(B (039)

4 i
=1 4i il ............... fl 4iPi4

i=1i=l ij
17 =
4 4
£ f2 . f2 4

T IN,(B40)

4 ", 4

i f24iP i...............- f24 p
i=l ii

Then the 4 nonzero elements of the matrix k are given by:

1i = - trace (S.S) (B41)

S£12 trace (S.T) (B42)
112

1
21 - trace (T.S) (B43)

W. - trace (T.S) (B44)

W- -21 2
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Finally, the matrix k is then given by:

4 4

- j s..s. Z s..t.. 0
Sjoi=l j'i=l

4 4

o 0 0 0

0 0 0 0

0



APPENDIX C

ITERATED EXTENDED KAIMAN FILTER. DETAILED EQLATIONS.

The Extended Kalman filter-equations for the Cartesian Coordinate

system representation of our tracking problem are given by equations

(3.1l)-(3.18). Equations (3.13) and (3.14) are obtained from the

following equation for the linearized system:

-,k = k ,k- + Kk(zkk ) (Cl)

where

* =,k -k,k- (c2)

v%,k-l -- *(•'.•k-l~k- (C3)

A 
(4

6zk = Zk-zk,k1 (C4)

The Extended Kalman-filter equation (3.13) is developed from equation

(Cl) through the special selection of linearization trajectory, namely:

S= •k,k-I (C6)

When the observation J is processed, A is obtained, and the system is
A

relinearized about ,k" Then, after processing of zk and relinearization,

, 0, and also AGk- 0 in view of equation (C3). As we can see,

equation (Cl) reduces to equations (3.13) and (3.14).

However, the Extended Kalmanfilter does not utilize the inproved

linearization trajectory4, for the processing of the observation Zk.

This is done by the iteration scheme described by Fig. Cl. The E-vector

has to be decided upon through simulations.

SET -103-
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APPENDIX D

ITERATED LINEAR FILTER-SMOOTHER. DETAILED EQUATIONS.

This iteration scheme is adapted to the Polar Coordinate system

representation of our tracking problem, where the observation equation is

linear. That means some simplifications imposed on the iterator proposed

by Jazwinski [2].

In order to avoid the matrix invertion necessary in Jazwinski's

approach, the equation

-i÷l + S(k, ^.) A (Dl)

can be transformed, making it unnecessary to calculate S(k, . ) explicitly.1

We have:

s(k, Ei) = P F(k, i)Pl 1  (D2)
1 k,k 1 k+l,k

^ ~A]
ni+l = k+l,k + K(k+l, Ci) [zk+lz+lJ k (D3)

where

K(k+l,_i)= P k+IT (HPk+H,kHT + Wk+l)-1 (D4)

Now, if we define:

TT -1SL~+1 • - -HT(Hpk+l,kH• kl-
L(k+1, S.) H (D5)

k + k k+l)

which gives:

K(k+l, ) = Pk+,kL(k+l, 6i) (D6)
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equation (Dl) can be written, inserting for n and s(k, Ci):

£i+1 = ,k +p F(kS. i)L(k+l'e K+1-+1,k' (D7)

The resulting iterator is simmarized on Fig. DI.

-- )(m • i---lm



P = P F +V

0

H

z L~~ k+1 = K(k+1I.E )=HT(P *~L~kF+ ~

0

E-4 'i+1 -~k41,k )= Kk+l~k'k+1

C =x +P *F

4i+1 ,k= kk (4k~klz

Az kI =z k+l k+1i +1

n.+ Azk+1

ilklk+ 'k+1 -

FIG Dl. ITRE LINEARz

-1+1 -?Sk FIkTE SMOOl*HER



APPENDIX E

DETAILED DERIVATION OF THE COVARIANCE EQUATIONS
FOR THE CARTESIAN YIFLAN FILTER.

In this Appendix we intend to derive the scalar equations for the a

priori and the a posteriori covariance imbedded in the matrix equations
(3.18) and (3.16).

The purpose 4s, if possible, to assimilate a deeper understanding

of the Kalman filter mechanism generating the expected variance on the

innovation signal.

In the following, we intend to utilize our knowledge of symmetry

in the covariance matrix to reduce the number of scalar equations from

16 to 10 equations.

Under these circimstances equation (3.16) reduces from the Joseph

form to the form:

P k,k (I-Kkk)Pk,k-1 (El)

where YC. and Hk is given by:

k,k-l' =Pk kT-l +Wk) -1 (E2)

Hk= coýk sin *k 1
[ - 0 01 (E3)

The variance of the innovation signal is given by:

2= YK Pkl~ T (E4)

By inserting for Hk from equation (E3) and utilize the synmetry fact

of the covariance matrix, equation (E4) can be transformed to:

-108-
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lk = R1[PI Cos + P22s - PI2 sin2ý1 + wk (E5)

where the subscript k,k-l are dropped on the elements of the covariance

matrix, and on R and ý. The same is done in the following.

Now, equation (E2) can be written as:

1 (E6)

'jk

Next we define:

Nk=R2 .2 W

Then the elements of the Kk-matrix can be calculated to be:

N

K2k -a PI2 cos ý-P22 sin ] (E9)

"K k [P13 cos O-P23 sin.) (E10)
K4k =-1[PI4 cos O-P24 sin 0] (Ell)

Now, from equation (E6) we have:

= 2 KT (E12)
NPk,k-l =k k

since the covariance matrix is symmetric.

Then, inserting from equation (E12) in equation (El) we ge',

2T
Pk,k "k,k-1 -Ck "K k (E13)

i Ei i l l tI l II ] I I iIIiIi l i•I I i
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Based on equation (E13) and equations (E7)-(t1t) we get the following

10 scalar covariance equations:

Pk,k P kk-_ p C O- s (E14)
11 11 Nkl1• 12

k,k k k,k-11l" "1 P 12 - PIrp cos 4-P12 sin ,] [P12 cos 4-P22 sin 4, (El5)

S=,k P kk-- 3 [P cos O-P sin 0] [P cos 4 - P2 3 sin 0]
p1 3  ~13 In 3 13. "12 13 2 E6(E16)

k,k kk-l I [p
P 1 4  p 1 4  NpII cos "1P12 sin ] 14 o •-P24 sin (] (E17)

k,k _k,k-1 1 C -P sin 4,]2 (E18)
22 22 - 12 22

k~k •_k-i 1 I2 cos 4 - P2 2 sin 0] [P1 3 cos 4-P 23 sin 4]
23 23 12 1 (E19)

Pk,k - k ,k-I 1[P Cos 4,-P sin 0][P Cos 4-P sin 4 , (E20)
24 24 Nk 12 12 14 24

k,k _kk-i i

P33 == P -- I [P cos -P 2 3 sin ,]2 (E21)
33 33 N k 13 2

k - _k,k-I 1 __

Pkk = P3 k- 1 [P cos ý-P sin 4,] cos O-P sin 4]
34 34 N k 13 4- 23  ( 14  4- 24  H2(E22)

k,k _k,k-i
P 44 = 44 -- N4 [P 1 4 cos 4,-P 2 4 sin 4,]2 (E23]

In equations (E4) - (E23), most of the variables on the rignt hand side

of the equations have got their subscript k,k-1 dropped.
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Now, the only place the range R enters the equations (E14)-(E23), is

Sthrough N From equation (E7) and (E5) Nk can be given by:
kk

Nk =P cos 2  +  P i2 + R (E24)
k 11 22 12si

Equivalently, if we define:

2 .2 2
a = sin2• +P cos2 + P sin 2ý (E25)

SR PI1 +22 PI2

equation (E24) can be written:

S= 2 + R 2  (E26)
Nk P11 P22 R Wk

Equations (E14) through (E23) gives the a posteriori covariance after

an observation intergration, based on the a priori covariance prior to

the observation integration.

Timeupdating of the covariance, i.e., calculating the a priori co-

variance at the next sample, based on the a posteriori variance at the

current sample, is performed through equation (3.18). By multiplying

out this matrix equation, utilizing the symmetric properties of the

covariance matrix, we get the following 10 time updating equations:

Sk+l,k kk,k k,k T2 k,kPI = Pl +2T PI +T PI + (T4 /4) .Vl(E7

11 11 13 13 1k(E7

P k+l,k k,k+ k,k k,k+ 2 k,k (E28)
12 12 (P 2 3  1P4 ) T P34

Erk+1~ Pk~kk k ,k E9
W 1I3 =1PI3 + T P33 + (T3 /2).VAE

k+l,k k,k k,k
PI P + T P (E30)

ME 14 A34
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p k+l,k kk k,k +T 2 k,k T4/4)V22 2 + 2T P24 P4 4  A 2k (331)

P k+l,k _ k,k + T _k,k

23 23 34
P k+l,k k,k + k,k +(T 3/2) M3

P4 =24+ T*•P 4 4  + T/) k(E333)

24 24 44k

P3 k = P3k + T2V (E34)
33 3 + A

Pk+lk =k~ k (E35)
34 34

P k+l,k = _k,k + T2V (E36)
44 44 2k

As we can see, the time updating equations increases the covariance

(except for P 34), while the observation integration equations reduces

the covariance again. It is clear from equations (E14) through (323)

that an increasing R reduces the size of the reduction, resulting in

higher values on the covariance matrix elements. The exact dependence

on Pk,k of R, however, has to be decided through simulations.

k ,
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APPENDIX F

CALCULATION OF INITIALIZATION VALUES FOR RANGE

SAND VELOCITY. NUMERICAL EXAMPLE.

In order to demonstrate the use of the results from section 4.3 and

4.4, the following example is constructed:

y

T?

0 Fig. Fl. Example.

In Fig. F1 we have:

E
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R5 = = v 1= 0 m/sec

v x• = 20 m/sec Vx sy0 = VsyI = 10 m/sec
v = 0 v = -10 m/sec

At = 25 sec v s2= 0 m/sec

Based on this data, we can calculate Axsi, Ays., i = 0,1,2, and *i'

i = 0,1,2,3. We i.Ave:

Axso = Ax s = Ays2 = 0

Ays0 = AYYs = 250 m

Axs 2 =-250 m

*0 = 0*
O00

i[5000250 ] 6.01

i = tan 1  500 12 L5000o 500 12.530

tan -1 1750 21/250

Equation (4.51) then gives

500 sin(O2 -01 )[sin * 3-cos *3]
= sin (3-•00) sin(O2-1 )-3 sin( 1-$0 ) sin($ 3-0 2 ) 5001.54 a

From equation (4.25) and (4.24) we obtain:

1 (sin sin 02V 50 0 F - 2  sin 20.01 3/secRI -sin(,-
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V =-COS0 + 5001 0.01 m/sec
o \sin ý Cos

NE



APPENDIX G

2

CALCULATION OF INITIAL VARIANCE FOR RANGE, 2,

If range, R., is calculated from equation (4.49), the initial value
Sof 02
of R can be calculated.

We assume that the different bearing observations are statistical
2

independent and uncorrelated, with variance CT. The bearing observations

are further statistical independent and uncorrelated with the observers

position increments, Axi, Ay., i=O,...,2. The different position in-

crements are also assumed statistical independent and uncorrelated, with

variance 02 =2 a
xs ys s

We now define:

xl = iAt [At3 (Axs + AX sl) - (t2-t)AX s2I (GI)

yl = At 1 (At 3 (Ay so Aysl) - (t 2 -t 0 )AYs 2]

x2 = (t 3 -t 0 ) [At 2 Ax so-At Ax sl (G3)

y2 = (t 3 -t 0) [At 2 Ayso-At 1 Aysl] (G4)

Now, by use of equations (Gl)-(G4), equation (4.49) can be written:

sin(O2 -0l) [yl-Sino3 - xl.cos 13] + sin(O3 - 2 )[x2 cos $l-y2 sinql]
i RO =~~ Att sin( (-0) sin( (2i)-At2 (t3-t • sin( (_-0 ) •sin (o3•

(G5)

As we can see, equation (G5) can be expressed as:

-116-
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R0= f(p 0 ,q 1 , 2 ,y 3 ,xl,x2,yl,y2) (G6)

If we develope the Taylor expansion for R about some nominal value
0

R' given by:

and neglecting ý -ms higher than first order, we get:

af af af af IL Sx+ f Sx

•f+ L6yI + E 6y- (GS)

We now define:

R0 -- R0-i0 (G9)

We then have:

0R2 = ET602 
(GlO)

By making use of equation (G8), (G9) and (GIO) we get:

2 (aff 2 f (i I 8f 2 (Lf \2 + f 2

j~af)2 ) 2 + (5
1 

_)2 + (Lyl]

f( (x)2 + (2f_ 2)2 (GlI)

Now, naming the demoninator in equation (G5) D, and the nominator N,

we calculate the different derivatives of the f-function. We have:



=-2 [~-At 1 A. 3 cos(ý 3 -ýo)sin(o 2 -0 1) + At 2(t 3-t0 Cs 10
t )N2

sin (o

(G12)

2 2-( co(P- 1 1 n 3 -x cs 3 ] + sin(o 3 -02 )[x2 sin 1 +y2cosO 1 ]VD +

N- (At 1 t"3sin( ( 3-P ) cos( 2-0 + At 2 (t,3 -t 0 )cos 1_0 )snO30

(G13)

1[csý21)y-iý3 x oý3ICSO30 ~]~ .)[x2 cosý 1-y2 sijo I])-D-

eD

N* (At At sin( Cs 0 +At( )io_0Csý
1 3 ( 3- 0)c( 2 1) t2(t3-t0)sn( 1-$ 0) 3- 2)

(G14)

Ii (sin( ) fyi c0s43 + x!t sino I + cos( ) [x2 coso -y2 sino1 )D

N (At1 At 3cos( (3-ý ) sinl( 2ý )-At 2 (t,3 -t. 0 )sin( 1_0)o(ý30

(G15)

R~ ~ -f 1 sinQ(-C).cos G6
a D 2 13

~y sin( 2 1 )sin 3  (G17)

- = 1i( ~ 3 - 2 )cos~, (Gi8)
ýx2 D-jn

ED__
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= - • sin(•3-2 )sin (G19)

Further we have:

2 ri (x \2 I x ) \2 I axi \2] 2
xl = a1-- +1-s +I-- J (G20a)X1 L3Ax 0 / 3Ax, aAx52  s

2 2 2 22o =At [At + At + (t2-t0) ]a (G20b)
Xl 1 3 3 2 0 s

= 1 A(g s + (ayl 2+ •2 ( )s2] 2 (G21a)

2 2 2 2 22o = At [At3 + At + (t 2-t 0) 10 (G21b)yl 1 3 3 20 s

2 f[(x2 \2 ) x2 (2A 2 2 2 2 2
x2 PaAs 1 DAX l s -(30t 2 i s

y2 2LAYsoJ + \ 2AY)]j " . (t=_-to) (At2 +At2) (G23)

We now define:

3 2•-K1 . 8i (G24)
•- i=0 a,

and

20 (2 J2 +( ))2

K 2.02 (= f )2 + 2 O + (G25)
Sax 1x ax 2 Clx2 1  a Y2)

Then equation (Gill) can be written

•-

a :



-120-

2 2 2G Kla + K20 (G26)
RO s

The variable K2 can be calculated to be:

K2 - n (2At 2 + (tt) 2 + sin2 (2_) (tt) (At 2 +At)2

D

(G27)

Further, Ki can be expressed as:

1 2 2K5]

1l [N - 2N.D.K4 D (G28)
D

where K3, K4 and K5 are given by:

2 2 [o2 2¢_0 2in2

K3 2{At2At3 [Cos 2 )sin 2 + sin (2 3 - 0 )cos 2

+ At At 2At 3 (t 3 -t 0 )sin2 ( 1 +03 -¢ 0 -€ 2 )

2 t( 2 2 .222

+ At (t 3 -t 0  [cos ( 0)sin( 3 2 ) + sin 0)COS

(G29)

(K4 = Atl 3 {2(yl sin%3-xl cos4 3 )sin(ý3 -4 0 ) cos 2 ( 2 -0 1 ) +

[yl cosý3 + xl sinC3 ] cos(O3 - o)sin2 (¢ 2 -4l) - [x2 cosýl-y2 sin$ 1].

cos 3 -2 sin( (1 +3-0-2 + [x2 sinol+y2 cosl sin ( 3 -0 2 )cos (2-0i)

sin -0 }

- + At2 (t--t)s { [yl sinJ-xl cos 3]cos -)sin(l)

• • ~-[yl cosO3 + xl sinO3] sin( (2l) sin( (l0) cos(O3¢2 0 (G30) -
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K(5 sin 2 ( -H)y1 cosý 3 + X1 siný 1 2 + sin 2 ( 34 2 )(x2 siný,+y2 cos~lJ 2

+ 2 cos 2 (02ý (yl siný 3 -xl cosO 3 ] 2 +Cs2 (ý 302) x2 coso 1 -y2 sino 11 2[-COS(O 2 -0 1 )sin(o 3 -ý 2 )[ y 'lo sn 3 -x1 cos 3] (~x2 sir4 1-i-y2 cs

-cos(ý -0 1 )cos(ý -02 (yl sin6 -X1 cos4 3 I[x2 coso1 y sn 1

+sin(42 -4)cos(43 4)[Y1 coscO3+xl sino 3 Hx2 cos41 y iý]

(G3 1)



APPENDIX H

INITIAL VALUES FOR THE VELOCITY COMPONENTS

OF THE COVARIANCE MATRIX

From section 4.3, equations (4.24) and (4.25), we have the following

expressions for the target velocity components:

_ 1 [ 2 sin(- 0 ) 2 -Sin Ax + AX +
Vx t2-t 0oAt 1 sin(o 2-) 1 0 so s

siný At At22 Cos a-o X s-AxAY-AY
sin 1 (2-1 1

1 [Ro At 2 sino (1-00 )CO2 cos o A2 A
-y tt 110 At2 -2Cs 0 } + AYs0 + AYssl+

C~s2 ,os 0x 2 s_~s]sn At 2 -At21 A~sy s]
sini ( - lo - A A)Isn

(H2)

The following accuracies are assumed defined:

C 0 = 0
sx sy s

=lo = = 02 Yo2

-122-
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Now, in order to simplify the equatiions to be developed, equations

(HI) and (112) can be written:

vx =fl(Ax sil Aysi R0' ý0' *i' (H4)

Vy 2 si, si, RO, ý0' Oi' 02)

where i=0,1.

We now develope the first order Taylor expansion for f and f
1 2

about some nominal values for Axs, AXs, AYs, Ays, R, 0 *i' *2'

named Ax 0, AX1sl Ays0 , Aysl, R%, 00, 01 and 02 Then we will get the

following equations:

af 1 a a 1 fi
6v =-+- AXso+ -- 6AXsl + a Ayx Axs +Axs s -Ys so -AY sl 0

sol f l soflBR

+ 1f 60+aso 1 af 6 (Hf6)
30 0 0 B1 1Da 2  2

af 2  f2 f af f2
t6v 2 SAx +-2 Ax+ -A2 Ayo+ 2 My + -ý 6R
y DAx 0 so so+Ax1s s! By 0 so mAy sl DR0

9f2 + 2 2 (f2

D0 0 0 1 1 3

where:

6 =v V =v -f 1)(f8

SVv = v-v = V - fl(") (H9)
y y y y 2
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S6AX = Ax -Ax (1s10)

SAX S, Ax -Ax3ý
si i -s

SAY 0 -Ays 0  (H12)

so Ays • -•sy (I3)

siY si A s i-&slM3

0400
S=* -- ~ (1115)s

60i€ = *2-02 (H16)

22 (1M17)

The velocity components of the covariance matrix are now given by:

[33 p34  [E6 xz jE{5v 6v 11  (His)

L4 p" J E{6V 6vx E (Ov )2 j

We now assume that AN0, Ax'1, Ayse, Ays, Re,' 00' 01 and 02 all are

statistical independent. Then we have

2 (af, I f 2 f )2 'af
)2} + (a ,2 +A 33 x I Axm

2 r01 2 (f l

'BR / O + +LB /~ o CFO*J (M19)
0 0
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1) E{(6v )2 [(f2 )2 +(f2 )2 / af2 )2 +af \21c
L4 4 \{TAXs s + + Y1so

o s•o0

p ~ ~ ý-s 6 f 1 f 0+af Pf2
p34 =p 43 = x wSvv -- s 9A so 9 - 2BX• l

af1 af2 1 a f 2 - 2 +Myso" ýAyo-- /AYs-- My l
sO, afs ~~

fl sf2 2 + raf] f 2  afl af 2 a f l 32] 2 (f21)

o ý L•0 R0L0o ^0+€ ¢I T+T2 aT2

The different derivatives of f and f2 are given in the following:

fl 1 isin 2 Cos i At22

-Xs t -t 1+ sin( ) At11 (H22)

sOx. 2 0 At0

=fl 1 sin 2 cos 1i

- - sx( (Hf23)

iAX tt-t2

1 sin _2 t2O 20 sin 0t (H24)MAyso t2-t0 sin( (2-01) 1 A

affl 1 sin 
(2f25)

UYsi1 t2t sin(02 -4l)

af cos • 2 cos O At 2

"sO t2t0 "sin(O2 _-l) At-

( ~ ~ ~ s iý 2 1 i i ii I ........... .. • '---
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af 2 1 Cos •2 Cos ý ( 27

BAx s! t 2-t 0 sin (02-I)H

Df2  1 i cos 02" sin 01 At 2  (H28)
DAYso t 2-t0 - sin(O2 -0 1 ) At 1J

3f2 1 Cos 02 sin (Hf29)
AY sl t 2 -t0 + sin(2

af 1 1 [At2 sin(ol-40 )sin 02 (
3R0  t 2 -t 0 At 1  sin($2 -0 1 ) - s 0n 0 3

_f2 1 [At 2 sin(4 1-• 0 ) cos *2 S0(31)

o =20-t L A sin(02 -0 1 ) - COS

afl R 0 [At2 Cos (01-70) sin 2 (3

DO 0 t 2 -t 0  At1  sin( 2 -_) 0 02

af ••f2 = R0 [At 2  cos(O1-0 cos 02 1

2 - At- sin(O2-0 1) 0 sin 0 (

_ 1 1 . At2 sin 02 * sin(O2-$0 ) sin 02
S-t At sin (021- sin2 (

[At~ 2  1 r~ 2  1 i
2 -0 _ AX Jsinos o [. "L 0-Ao] J J (H34)

10 af2 i F At 2  Cos 02 -sin(02-ý0) Cos *
E'1  t 2 - 0  1 sin2 (2-0 sin (03

Ax s AX]Cos ] [ Ay - i] (IH5

Ms so 1iA
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At sin(ý -)siný, sino1

-0 t 2-t ~o 0 t sin 2 (0 2-01) sin (2 ~-'Y

Lail~ At1~ y(H6

2_ 1 I At 2 sin(o 1-~00)Cos 1i Cos

-t~] 0 t9'ý sin2 (0 sin (02 41

Co lF--A o- AXs1- sin IAty Y 0-Ay (H37)

S11


